Layers and matroids for the traveling salesman’s paths
Gottschalk and Vygen proved that every solution of the subtour elimination linear program for traveling salesman paths is a convex combination of more and more restrictive “generalized Gao-trees”. We give a short proof of this fact, as a layered convex combination of bases of a sequence of increasin...
Gespeichert in:
| Veröffentlicht in: | Operations research letters Jg. 46; H. 1; S. 60 - 63 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.01.2018
Elsevier |
| Schlagworte: | |
| ISSN: | 0167-6377, 1872-7468 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Gottschalk and Vygen proved that every solution of the subtour elimination linear program for traveling salesman paths is a convex combination of more and more restrictive “generalized Gao-trees”. We give a short proof of this fact, as a layered convex combination of bases of a sequence of increasingly restrictive matroids. A strongly polynomial, combinatorial algorithm follows for finding this convex combination, which is a new tool offering polyhedral insight, already instrumental in recent results for the s−t path TSP. |
|---|---|
| ISSN: | 0167-6377 1872-7468 |
| DOI: | 10.1016/j.orl.2017.11.002 |