Layers and matroids for the traveling salesman’s paths
Gottschalk and Vygen proved that every solution of the subtour elimination linear program for traveling salesman paths is a convex combination of more and more restrictive “generalized Gao-trees”. We give a short proof of this fact, as a layered convex combination of bases of a sequence of increasin...
Uloženo v:
| Vydáno v: | Operations research letters Ročník 46; číslo 1; s. 60 - 63 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.01.2018
Elsevier |
| Témata: | |
| ISSN: | 0167-6377, 1872-7468 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Gottschalk and Vygen proved that every solution of the subtour elimination linear program for traveling salesman paths is a convex combination of more and more restrictive “generalized Gao-trees”. We give a short proof of this fact, as a layered convex combination of bases of a sequence of increasingly restrictive matroids. A strongly polynomial, combinatorial algorithm follows for finding this convex combination, which is a new tool offering polyhedral insight, already instrumental in recent results for the s−t path TSP. |
|---|---|
| ISSN: | 0167-6377 1872-7468 |
| DOI: | 10.1016/j.orl.2017.11.002 |