An approximation algorithm for graph partitioning via deterministic annealing neural network

Graph partitioning, a classical NP-hard combinatorial optimization problem, is widely applied to industrial or management problems. In this study, an approximated solution of the graph partitioning problem is obtained by using a deterministic annealing neural network algorithm. The algorithm is a co...

Full description

Saved in:
Bibliographic Details
Published in:Neural networks Vol. 117; pp. 191 - 200
Main Authors: Wu, Zhengtian, Karimi, Hamid Reza, Dang, Chuangyin
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 01.09.2019
Subjects:
ISSN:0893-6080, 1879-2782, 1879-2782
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Graph partitioning, a classical NP-hard combinatorial optimization problem, is widely applied to industrial or management problems. In this study, an approximated solution of the graph partitioning problem is obtained by using a deterministic annealing neural network algorithm. The algorithm is a continuation method that attempts to obtain a high-quality solution by following a path of minimum points of a barrier problem as the barrier parameter is reduced from a sufficiently large positive number to 0. With the barrier parameter assumed to be any positive number, one minimum solution of the barrier problem can be found by the algorithm in a feasible descent direction. With a globally convergent iterative procedure, the feasible descent direction could be obtained by renewing Lagrange multipliers red. A distinctive feature of it is that the upper and lower bounds on the variables will be automatically satisfied on the condition that the step length is a value from 0 to 1. Four well-known algorithms are compared with the proposed one on 100 test samples. Simulation results show effectiveness of the proposed algorithm.
AbstractList Graph partitioning, a classical NP-hard combinatorial optimization problem, is widely applied to industrial or management problems. In this study, an approximated solution of the graph partitioning problem is obtained by using a deterministic annealing neural network algorithm. The algorithm is a continuation method that attempts to obtain a high-quality solution by following a path of minimum points of a barrier problem as the barrier parameter is reduced from a sufficiently large positive number to 0. With the barrier parameter assumed to be any positive number, one minimum solution of the barrier problem can be found by the algorithm in a feasible descent direction. With a globally convergent iterative procedure, the feasible descent direction could be obtained by renewing Lagrange multipliers red. A distinctive feature of it is that the upper and lower bounds on the variables will be automatically satisfied on the condition that the step length is a value from 0 to 1. Four well-known algorithms are compared with the proposed one on 100 test samples. Simulation results show effectiveness of the proposed algorithm.
Graph partitioning, a classical NP-hard combinatorial optimization problem, is widely applied to industrial or management problems. In this study, an approximated solution of the graph partitioning problem is obtained by using a deterministic annealing neural network algorithm. The algorithm is a continuation method that attempts to obtain a high-quality solution by following a path of minimum points of a barrier problem as the barrier parameter is reduced from a sufficiently large positive number to 0. With the barrier parameter assumed to be any positive number, one minimum solution of the barrier problem can be found by the algorithm in a feasible descent direction. With a globally convergent iterative procedure, the feasible descent direction could be obtained by renewing Lagrange multipliers red. A distinctive feature of it is that the upper and lower bounds on the variables will be automatically satisfied on the condition that the step length is a value from 0 to 1. Four well-known algorithms are compared with the proposed one on 100 test samples. Simulation results show effectiveness of the proposed algorithm.Graph partitioning, a classical NP-hard combinatorial optimization problem, is widely applied to industrial or management problems. In this study, an approximated solution of the graph partitioning problem is obtained by using a deterministic annealing neural network algorithm. The algorithm is a continuation method that attempts to obtain a high-quality solution by following a path of minimum points of a barrier problem as the barrier parameter is reduced from a sufficiently large positive number to 0. With the barrier parameter assumed to be any positive number, one minimum solution of the barrier problem can be found by the algorithm in a feasible descent direction. With a globally convergent iterative procedure, the feasible descent direction could be obtained by renewing Lagrange multipliers red. A distinctive feature of it is that the upper and lower bounds on the variables will be automatically satisfied on the condition that the step length is a value from 0 to 1. Four well-known algorithms are compared with the proposed one on 100 test samples. Simulation results show effectiveness of the proposed algorithm.
Author Dang, Chuangyin
Wu, Zhengtian
Karimi, Hamid Reza
Author_xml – sequence: 1
  givenname: Zhengtian
  orcidid: 0000-0001-7702-5730
  surname: Wu
  fullname: Wu, Zhengtian
  email: wzht8@mail.usts.edu.cn
  organization: School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
– sequence: 2
  givenname: Hamid Reza
  surname: Karimi
  fullname: Karimi, Hamid Reza
  email: hamidreza.karimi@polimi.it
  organization: Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
– sequence: 3
  givenname: Chuangyin
  surname: Dang
  fullname: Dang, Chuangyin
  organization: Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31174047$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1v1DAQhi3Uim4L_wChHLkk9dc6NgekqiofUqVeyg3J8tqTrZfEDra30H9fhy0cONDTaDTPO5p5TtFRiAEQekNwRzAR57suwD5A6SgmqsPrDhP8Aq2I7FVLe0mP0ApLxVqBJT5BpznvMMZCcvYSnTBCeo55v0LfLkJj5jnFX34yxcfajduYfLmbmiGmZpvMfNfMJhW_TH3YNvfeNA4KpMkHn4u3jQkBzLjM6knJjLWUnzF9f4WOBzNmeP1Uz9DXj1e3l5_b65tPXy4vrlvLBC2tYxtClRwIsVz2oreCs2EjFFDHBDY9l072hhMLgxwEGKEGBUQwbIhzTFJ2ht4d9tY_fuwhFz35bGEcTYC4z5pSTslacbWgb5_Q_WYCp-dU_04P-o-RCvADYFPMOcHwFyFYL-L1Th_E60W8xmtdxdfY-39i1pffQksyfnwu_OEQhirp3kPS2XoIFpxPYIt20f9_wSP6y6KC
CitedBy_id crossref_primary_10_1016_j_amc_2024_129114
crossref_primary_10_1007_s40815_022_01335_7
crossref_primary_10_1080_23335777_2023_2175915
crossref_primary_10_32604_cmes_2023_025500
crossref_primary_10_1016_j_neunet_2020_08_021
crossref_primary_10_1177_0959651820933380
crossref_primary_10_1002_net_22257
crossref_primary_10_1177_01423312211028217
crossref_primary_10_3390_app13053216
crossref_primary_10_1016_j_jfranklin_2022_06_009
crossref_primary_10_1177_0959651820953679
crossref_primary_10_32604_cmes_2022_020656
crossref_primary_10_1016_j_neucom_2019_11_087
crossref_primary_10_32604_cmes_2022_020771
crossref_primary_10_32604_cmes_2022_022279
crossref_primary_10_1002_rnc_5500
crossref_primary_10_1109_TFUZZ_2020_2982618
crossref_primary_10_1109_TCSI_2020_3004170
crossref_primary_10_1016_j_ins_2021_02_072
crossref_primary_10_1016_j_chaos_2024_114625
crossref_primary_10_1177_0959651820958208
crossref_primary_10_1016_j_amc_2021_126518
crossref_primary_10_1016_j_ins_2020_01_004
crossref_primary_10_1007_s40815_022_01348_2
crossref_primary_10_1016_j_energy_2025_136600
crossref_primary_10_1177_13835416241304336
crossref_primary_10_1007_s42835_023_01417_y
crossref_primary_10_1109_TMECH_2019_2929224
crossref_primary_10_1016_j_neunet_2020_07_033
crossref_primary_10_32604_cmes_2022_023217
crossref_primary_10_3390_electronics13224455
crossref_primary_10_1007_s40815_020_00949_z
crossref_primary_10_1016_j_future_2023_12_008
crossref_primary_10_1007_s00170_019_04201_3
crossref_primary_10_1007_s40815_020_00892_z
crossref_primary_10_1177_0959651820939345
crossref_primary_10_1016_j_neucom_2019_10_066
crossref_primary_10_1007_s00170_019_04102_5
crossref_primary_10_1177_0959651820937085
crossref_primary_10_32604_cmes_2023_027425
crossref_primary_10_1049_iet_cta_2020_0901
crossref_primary_10_1016_j_neucom_2021_06_050
crossref_primary_10_1007_s11760_023_02989_y
crossref_primary_10_1080_21642583_2023_2207602
crossref_primary_10_1016_j_ijleo_2020_164196
crossref_primary_10_1016_j_eswa_2023_120762
crossref_primary_10_1016_j_mechatronics_2023_103066
crossref_primary_10_1177_0959651820935668
crossref_primary_10_1016_j_jfranklin_2023_01_033
crossref_primary_10_1177_0959651820937841
crossref_primary_10_1016_j_jfranklin_2020_04_061
crossref_primary_10_1016_j_ins_2022_11_073
crossref_primary_10_1016_j_amc_2019_124854
crossref_primary_10_1049_iet_its_2019_0258
crossref_primary_10_1007_s42835_023_01376_4
crossref_primary_10_1049_joe_2019_0882
crossref_primary_10_1007_s00170_019_04111_4
crossref_primary_10_1007_s00170_020_05417_4
crossref_primary_10_1080_23335777_2020_1716269
crossref_primary_10_3390_pr10071236
crossref_primary_10_1177_09596518241266865
crossref_primary_10_1007_s40815_020_00890_1
crossref_primary_10_1016_j_asoc_2024_112109
crossref_primary_10_1007_s41019_021_00156_2
crossref_primary_10_2139_ssrn_5053244
crossref_primary_10_1002_rnc_4664
crossref_primary_10_1007_s40815_020_00898_7
crossref_primary_10_1080_21642583_2019_1674222
crossref_primary_10_1016_j_jfranklin_2019_09_007
crossref_primary_10_3390_s22186843
crossref_primary_10_1016_j_isatra_2020_05_042
crossref_primary_10_32604_cmes_2023_027010
crossref_primary_10_3390_machines10080600
Cites_doi 10.1007/s10878-018-0254-1
10.1016/j.neunet.2008.09.008
10.1137/S1064827595287997
10.1016/S0893-6080(00)00092-7
10.1109/TNNLS.2013.2280905
10.1016/S0377-2217(99)00284-2
10.1016/S0893-6080(02)00027-8
10.1137/S1064827594275339
10.1016/j.neunet.2012.12.002
10.1007/BF00339943
10.1016/j.neunet.2017.07.018
10.1073/pnas.81.10.3088
10.1016/j.neunet.2018.09.001
10.1016/j.neunet.2011.03.018
10.1016/j.amc.2017.08.031
10.1080/10556788.2016.1230209
10.1287/opre.39.5.824
10.1109/TNNLS.2017.2696582
10.1080/19942060.2018.1482476
10.1016/j.neunet.2018.07.011
10.1038/326689a0
10.1002/j.1538-7305.1970.tb01770.x
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.neunet.2019.05.010
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 200
ExternalDocumentID 31174047
10_1016_j_neunet_2019_05_010
S089360801930142X
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
NPM
7X8
ID FETCH-LOGICAL-c362t-d3b1298f11c48767c643fb69e2d360a748d87a41cef8f6ea69f9e1630a1dd3823
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477943300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0893-6080
1879-2782
IngestDate Thu Oct 02 17:07:15 EDT 2025
Tue Aug 05 11:37:59 EDT 2025
Sat Nov 29 07:18:35 EST 2025
Tue Nov 18 22:00:52 EST 2025
Fri Feb 23 02:28:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Graph partitioning
Deterministic annealing neural network algorithm
NP-hard problem
Neural network
Combinatorial optimization
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-d3b1298f11c48767c643fb69e2d360a748d87a41cef8f6ea69f9e1630a1dd3823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7702-5730
PMID 31174047
PQID 2242159492
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2242159492
pubmed_primary_31174047
crossref_primary_10_1016_j_neunet_2019_05_010
crossref_citationtrail_10_1016_j_neunet_2019_05_010
elsevier_sciencedirect_doi_10_1016_j_neunet_2019_05_010
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Moazenzadeh, Mohammadi, Shamshirband, Chau (b30) 2018; 12
Wei, Park, Karimi, Tian, Jung (b36) 2018; 29
Xu, Cui, Chen, Huang, Shao (b37) 2015
Phan, Le Nguyen, Nguyen, Bui (b32) 2018; 108
Dang, He, Hui (b10) 2002; 15
Hopfield, Tank (b21) 1985; 52
Lengauer (b28) 2012
Shi, Malik (b35) 2000
Ceberio, Mendiburu, Lozano (b6) 2017
Buluç, Meyerhenke, Safro, Sanders, Schulz (b5) 2016
Chiarandini, Dumitrescu, Stützle (b8) 2018
Recalde, Severín, Torres, Vaca (b34) 2018; 36
Bello, Pham, Le, Norouzi, Bengio (b3) 2017
Kapur (b24) 1989
Dang, Xu (b14) 2001; 14
Dang, Liang, Yang (b11) 2013; 39
Dang, Sun, Wang, Yang (b13) 2011; 24
Chalupa, D. A Memetic Algorithm for the Minimum Conductance Graph Partitioning Problem, arXiv preprint
Gupta, Lal (b17) 2018
LaSalle, Karypis (b27) 2016
Prisner (b33) 1995
He, Li, Huang, Li, Huang (b18) 2014; 25
Jahani, Mohammadi (b22) 2018
Karypis, Kumar (b25) 1998; 20
Buda, Maki, Mazurowski (b4) 2018; 106
Minoux (b29) 1986
Gilbert, Miller, Teng (b16) 1998; 19
Kalayci, Battiti (b23) 2018; 318
.
Dang, Ma, Liang (b12) 2009; 22
Hopfield (b20) 1984; 81
Ahmadi, Tang (b1) 1991; 39
Cochocki, Unbehauen (b9) 1993
Kernighan, Lin (b26) 1970; 49
Nguyen, Minoux (b31) 2017; 32
Durbin, Willshaw (b15) 1987; 326
Bataineh, Marler (b2) 2017; 95
Helsgaun (b19) 2000; 126
Cochocki (10.1016/j.neunet.2019.05.010_b9) 1993
Nguyen (10.1016/j.neunet.2019.05.010_b31) 2017; 32
Recalde (10.1016/j.neunet.2019.05.010_b34) 2018; 36
Xu (10.1016/j.neunet.2019.05.010_b37) 2015
He (10.1016/j.neunet.2019.05.010_b18) 2014; 25
Helsgaun (10.1016/j.neunet.2019.05.010_b19) 2000; 126
Minoux (10.1016/j.neunet.2019.05.010_b29) 1986
Lengauer (10.1016/j.neunet.2019.05.010_b28) 2012
Ceberio (10.1016/j.neunet.2019.05.010_b6) 2017
Prisner (10.1016/j.neunet.2019.05.010_b33) 1995
Dang (10.1016/j.neunet.2019.05.010_b10) 2002; 15
Bataineh (10.1016/j.neunet.2019.05.010_b2) 2017; 95
Shi (10.1016/j.neunet.2019.05.010_b35) 2000
Bello (10.1016/j.neunet.2019.05.010_b3) 2017
Phan (10.1016/j.neunet.2019.05.010_b32) 2018; 108
Buda (10.1016/j.neunet.2019.05.010_b4) 2018; 106
Wei (10.1016/j.neunet.2019.05.010_b36) 2018; 29
LaSalle (10.1016/j.neunet.2019.05.010_b27) 2016
Moazenzadeh (10.1016/j.neunet.2019.05.010_b30) 2018; 12
10.1016/j.neunet.2019.05.010_b7
Kernighan (10.1016/j.neunet.2019.05.010_b26) 1970; 49
Buluç (10.1016/j.neunet.2019.05.010_b5) 2016
Gupta (10.1016/j.neunet.2019.05.010_b17) 2018
Ahmadi (10.1016/j.neunet.2019.05.010_b1) 1991; 39
Hopfield (10.1016/j.neunet.2019.05.010_b21) 1985; 52
Kalayci (10.1016/j.neunet.2019.05.010_b23) 2018; 318
Chiarandini (10.1016/j.neunet.2019.05.010_b8) 2018
Durbin (10.1016/j.neunet.2019.05.010_b15) 1987; 326
Gilbert (10.1016/j.neunet.2019.05.010_b16) 1998; 19
Hopfield (10.1016/j.neunet.2019.05.010_b20) 1984; 81
Dang (10.1016/j.neunet.2019.05.010_b14) 2001; 14
Kapur (10.1016/j.neunet.2019.05.010_b24) 1989
Karypis (10.1016/j.neunet.2019.05.010_b25) 1998; 20
Dang (10.1016/j.neunet.2019.05.010_b11) 2013; 39
Jahani (10.1016/j.neunet.2019.05.010_b22) 2018
Dang (10.1016/j.neunet.2019.05.010_b13) 2011; 24
Dang (10.1016/j.neunet.2019.05.010_b12) 2009; 22
References_xml – start-page: 1629
  year: 2017
  end-page: 1636
  ident: b6
  article-title: A square lattice probability model for optimising the graph partitioning problem
  publication-title: 2017 IEEE congress on evolutionary computation
– volume: 32
  start-page: 892
  year: 2017
  end-page: 903
  ident: b31
  article-title: Improved linearized models for graph partitioning problem under capacity constraints
  publication-title: Optimization Methods & Software
– volume: 25
  start-page: 824
  year: 2014
  end-page: 830
  ident: b18
  article-title: A recurrent neural network for solving bilevel linear programming problem
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 39
  start-page: 1
  year: 2013
  end-page: 11
  ident: b11
  article-title: A deterministic annealing algorithm for approximating a solution of the linearly constrained nonconvex quadratic minimization problem
  publication-title: Neural Networks
– start-page: 1
  year: 2018
  end-page: 13
  ident: b22
  article-title: A comparison between the application of empirical and ANN methods for estimation of daily global solar radiation in iran
  publication-title: Theoretical and Applied Climatology
– start-page: 117
  year: 2016
  end-page: 158
  ident: b5
  article-title: Recent advances in graph partitioning
  publication-title: Algorithm engineering
– volume: 318
  start-page: 227
  year: 2018
  end-page: 244
  ident: b23
  article-title: A reactive self-tuning scheme for multilevel graph partitioning
  publication-title: Applied Mathematics and Computation
– reference: Chalupa, D. A Memetic Algorithm for the Minimum Conductance Graph Partitioning Problem, arXiv preprint
– start-page: 1
  year: 2015
  ident: b37
  article-title: Heterogeneous environment aware streaming graph partitioning
  publication-title: IEEE Transactions on Knowledge & Data Engineering
– volume: 36
  start-page: 916
  year: 2018
  end-page: 936
  ident: b34
  article-title: An exact approach for the balanced k-way partitioning problem with weight constraints and its application to sports team realignment
  publication-title: Journal of Combinatorial Optimization
– volume: 49
  start-page: 291
  year: 1970
  end-page: 307
  ident: b26
  article-title: An efficient heuristic procedure for partitioning graphs
  publication-title: The Bell System Technical Journal
– volume: 39
  start-page: 824
  year: 1991
  end-page: 835
  ident: b1
  article-title: An operation partitioning problem for automated assembly system design
  publication-title: Operations Research
– volume: 15
  start-page: 441
  year: 2002
  end-page: 458
  ident: b10
  article-title: A deterministic annealing algorithm for approximating a solution of the max-bisection problem
  publication-title: Neural Networks
– volume: 14
  start-page: 217
  year: 2001
  end-page: 230
  ident: b14
  article-title: A globally convergent Lagrange and barrier function iterative algorithm for the traveling salesman problem
  publication-title: Neural Networks
– volume: 81
  start-page: 3088
  year: 1984
  end-page: 3092
  ident: b20
  article-title: Neurons with graded response have collective computational properties like those of two-state neurons
  publication-title: Proceedings of the national academy of sciences
– year: 2012
  ident: b28
  article-title: Combinatorial algorithms for integrated circuit layout
– year: 2018
  ident: b8
  article-title: Stochastic local search algorithms for the graph colouring problem
  publication-title: Handbook of approximation algorithms and metaheuristics
– volume: 326
  start-page: 689
  year: 1987
  ident: b15
  article-title: An analogue approach to the travelling salesman problem using an elastic net method
  publication-title: Nature
– year: 1986
  ident: b29
  article-title: Mathematical programming: theory and algorithms
– year: 1995
  ident: b33
  article-title: Graph dynamics, vol. 338
– volume: 22
  start-page: 58
  year: 2009
  end-page: 66
  ident: b12
  article-title: A deterministic annealing algorithm for approximating a solution of the min-bisection problem
  publication-title: Neural Networks
– volume: 52
  start-page: 141
  year: 1985
  end-page: 152
  ident: b21
  article-title: Neural computation of decisions in optimization problems
  publication-title: Biological Cybernetics
– volume: 126
  start-page: 106
  year: 2000
  end-page: 130
  ident: b19
  article-title: An effective implementation of the lin-kernighan traveling salesman heuristic
  publication-title: European Journal of Operational Research
– volume: 108
  start-page: 533
  year: 2018
  end-page: 543
  ident: b32
  article-title: DGCNN: A convolutional neural network over large-scale labeled graphs
  publication-title: Neural Networks
– volume: 106
  start-page: 249
  year: 2018
  end-page: 259
  ident: b4
  article-title: A systematic study of the class imbalance problem in convolutional neural networks
  publication-title: Neural Networks
– volume: 24
  start-page: 699
  year: 2011
  end-page: 708
  ident: b13
  article-title: A deterministic annealing algorithm for the minimum concave cost network flow problem
  publication-title: Neural Networks
– year: 2018
  ident: b17
  article-title: Comparison of some approximate algorithms proposed for traveling salesmen and graph partitioning problems
  publication-title: Proceedings of 3rd international conference on internet of things and connected technologies
– reference: .
– volume: 95
  start-page: 1
  year: 2017
  end-page: 9
  ident: b2
  article-title: Neural network for regression problems with reduced training sets
  publication-title: Neural Networks
– year: 1989
  ident: b24
  article-title: Maximum-entropy models in science and engineering
– start-page: 107
  year: 2000
  ident: b35
  article-title: Normalized cuts and image segmentation
  publication-title: Departmental Papers (CIS)
– volume: 29
  start-page: 2488
  year: 2018
  end-page: 2501
  ident: b36
  article-title: Improved stability and stabilization results for stochastic synchronization of continuous-time semi-Markovian jump neural networks with time-varying delay
  publication-title: IEEE Transactions on Neural networks and Learning Systems
– start-page: 236
  year: 2016
  end-page: 241
  ident: b27
  article-title: A parallel hill-climbing refinement algorithm for graph partitioning
  publication-title: 45th international conference on parallel processing (ICPP)
– year: 2017
  ident: b3
  article-title: Neural combinatorial optimization
– volume: 19
  start-page: 2091
  year: 1998
  end-page: 2110
  ident: b16
  article-title: Geometric mesh partitioning: implementation and experiments
  publication-title: SIAM Journal on Scientific Computing
– volume: 12
  start-page: 584
  year: 2018
  end-page: 597
  ident: b30
  article-title: Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran
  publication-title: Engineering Applications of Computational Fluid Mechanics
– year: 1993
  ident: b9
  article-title: Neural networks for optimization and signal processing
– volume: 20
  start-page: 359
  year: 1998
  end-page: 392
  ident: b25
  article-title: A fast and high quality multilevel scheme for partitioning irregular graphs
  publication-title: SIAM Journal on Scientific Computing
– volume: 36
  start-page: 916
  issue: 3
  year: 2018
  ident: 10.1016/j.neunet.2019.05.010_b34
  article-title: An exact approach for the balanced k-way partitioning problem with weight constraints and its application to sports team realignment
  publication-title: Journal of Combinatorial Optimization
  doi: 10.1007/s10878-018-0254-1
– start-page: 107
  year: 2000
  ident: 10.1016/j.neunet.2019.05.010_b35
  article-title: Normalized cuts and image segmentation
  publication-title: Departmental Papers (CIS)
– year: 1989
  ident: 10.1016/j.neunet.2019.05.010_b24
– year: 2017
  ident: 10.1016/j.neunet.2019.05.010_b3
– volume: 22
  start-page: 58
  issue: 1
  year: 2009
  ident: 10.1016/j.neunet.2019.05.010_b12
  article-title: A deterministic annealing algorithm for approximating a solution of the min-bisection problem
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2008.09.008
– volume: 20
  start-page: 359
  issue: 1
  year: 1998
  ident: 10.1016/j.neunet.2019.05.010_b25
  article-title: A fast and high quality multilevel scheme for partitioning irregular graphs
  publication-title: SIAM Journal on Scientific Computing
  doi: 10.1137/S1064827595287997
– volume: 14
  start-page: 217
  issue: 2
  year: 2001
  ident: 10.1016/j.neunet.2019.05.010_b14
  article-title: A globally convergent Lagrange and barrier function iterative algorithm for the traveling salesman problem
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(00)00092-7
– volume: 25
  start-page: 824
  issue: 4
  year: 2014
  ident: 10.1016/j.neunet.2019.05.010_b18
  article-title: A recurrent neural network for solving bilevel linear programming problem
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2013.2280905
– start-page: 1629
  year: 2017
  ident: 10.1016/j.neunet.2019.05.010_b6
  article-title: A square lattice probability model for optimising the graph partitioning problem
– year: 1993
  ident: 10.1016/j.neunet.2019.05.010_b9
– volume: 126
  start-page: 106
  issue: 1
  year: 2000
  ident: 10.1016/j.neunet.2019.05.010_b19
  article-title: An effective implementation of the lin-kernighan traveling salesman heuristic
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(99)00284-2
– volume: 15
  start-page: 441
  issue: 3
  year: 2002
  ident: 10.1016/j.neunet.2019.05.010_b10
  article-title: A deterministic annealing algorithm for approximating a solution of the max-bisection problem
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(02)00027-8
– volume: 19
  start-page: 2091
  issue: 6
  year: 1998
  ident: 10.1016/j.neunet.2019.05.010_b16
  article-title: Geometric mesh partitioning: implementation and experiments
  publication-title: SIAM Journal on Scientific Computing
  doi: 10.1137/S1064827594275339
– volume: 39
  start-page: 1
  year: 2013
  ident: 10.1016/j.neunet.2019.05.010_b11
  article-title: A deterministic annealing algorithm for approximating a solution of the linearly constrained nonconvex quadratic minimization problem
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2012.12.002
– volume: 52
  start-page: 141
  issue: 3
  year: 1985
  ident: 10.1016/j.neunet.2019.05.010_b21
  article-title: Neural computation of decisions in optimization problems
  publication-title: Biological Cybernetics
  doi: 10.1007/BF00339943
– volume: 95
  start-page: 1
  year: 2017
  ident: 10.1016/j.neunet.2019.05.010_b2
  article-title: Neural network for regression problems with reduced training sets
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2017.07.018
– year: 2012
  ident: 10.1016/j.neunet.2019.05.010_b28
– volume: 81
  start-page: 3088
  issue: 10
  year: 1984
  ident: 10.1016/j.neunet.2019.05.010_b20
  article-title: Neurons with graded response have collective computational properties like those of two-state neurons
  publication-title: Proceedings of the national academy of sciences
  doi: 10.1073/pnas.81.10.3088
– year: 1986
  ident: 10.1016/j.neunet.2019.05.010_b29
– volume: 108
  start-page: 533
  year: 2018
  ident: 10.1016/j.neunet.2019.05.010_b32
  article-title: DGCNN: A convolutional neural network over large-scale labeled graphs
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.09.001
– year: 1995
  ident: 10.1016/j.neunet.2019.05.010_b33
– volume: 24
  start-page: 699
  issue: 7
  year: 2011
  ident: 10.1016/j.neunet.2019.05.010_b13
  article-title: A deterministic annealing algorithm for the minimum concave cost network flow problem
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2011.03.018
– volume: 318
  start-page: 227
  year: 2018
  ident: 10.1016/j.neunet.2019.05.010_b23
  article-title: A reactive self-tuning scheme for multilevel graph partitioning
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2017.08.031
– year: 2018
  ident: 10.1016/j.neunet.2019.05.010_b17
  article-title: Comparison of some approximate algorithms proposed for traveling salesmen and graph partitioning problems
– ident: 10.1016/j.neunet.2019.05.010_b7
– volume: 32
  start-page: 892
  issue: 4
  year: 2017
  ident: 10.1016/j.neunet.2019.05.010_b31
  article-title: Improved linearized models for graph partitioning problem under capacity constraints
  publication-title: Optimization Methods & Software
  doi: 10.1080/10556788.2016.1230209
– volume: 39
  start-page: 824
  issue: 5
  year: 1991
  ident: 10.1016/j.neunet.2019.05.010_b1
  article-title: An operation partitioning problem for automated assembly system design
  publication-title: Operations Research
  doi: 10.1287/opre.39.5.824
– start-page: 1
  year: 2018
  ident: 10.1016/j.neunet.2019.05.010_b22
  article-title: A comparison between the application of empirical and ANN methods for estimation of daily global solar radiation in iran
  publication-title: Theoretical and Applied Climatology
– volume: 29
  start-page: 2488
  issue: 6
  year: 2018
  ident: 10.1016/j.neunet.2019.05.010_b36
  article-title: Improved stability and stabilization results for stochastic synchronization of continuous-time semi-Markovian jump neural networks with time-varying delay
  publication-title: IEEE Transactions on Neural networks and Learning Systems
  doi: 10.1109/TNNLS.2017.2696582
– start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.neunet.2019.05.010_b37
  article-title: Heterogeneous environment aware streaming graph partitioning
  publication-title: IEEE Transactions on Knowledge & Data Engineering
– start-page: 236
  year: 2016
  ident: 10.1016/j.neunet.2019.05.010_b27
  article-title: A parallel hill-climbing refinement algorithm for graph partitioning
– volume: 12
  start-page: 584
  issue: 1
  year: 2018
  ident: 10.1016/j.neunet.2019.05.010_b30
  article-title: Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran
  publication-title: Engineering Applications of Computational Fluid Mechanics
  doi: 10.1080/19942060.2018.1482476
– volume: 106
  start-page: 249
  year: 2018
  ident: 10.1016/j.neunet.2019.05.010_b4
  article-title: A systematic study of the class imbalance problem in convolutional neural networks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.07.011
– start-page: 117
  year: 2016
  ident: 10.1016/j.neunet.2019.05.010_b5
  article-title: Recent advances in graph partitioning
– year: 2018
  ident: 10.1016/j.neunet.2019.05.010_b8
  article-title: Stochastic local search algorithms for the graph colouring problem
– volume: 326
  start-page: 689
  issue: 6114
  year: 1987
  ident: 10.1016/j.neunet.2019.05.010_b15
  article-title: An analogue approach to the travelling salesman problem using an elastic net method
  publication-title: Nature
  doi: 10.1038/326689a0
– volume: 49
  start-page: 291
  issue: 2
  year: 1970
  ident: 10.1016/j.neunet.2019.05.010_b26
  article-title: An efficient heuristic procedure for partitioning graphs
  publication-title: The Bell System Technical Journal
  doi: 10.1002/j.1538-7305.1970.tb01770.x
SSID ssj0006843
Score 2.5633585
Snippet Graph partitioning, a classical NP-hard combinatorial optimization problem, is widely applied to industrial or management problems. In this study, an...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 191
SubjectTerms Combinatorial optimization
Deterministic annealing neural network algorithm
Graph partitioning
Neural network
NP-hard problem
Title An approximation algorithm for graph partitioning via deterministic annealing neural network
URI https://dx.doi.org/10.1016/j.neunet.2019.05.010
https://www.ncbi.nlm.nih.gov/pubmed/31174047
https://www.proquest.com/docview/2242159492
Volume 117
WOSCitedRecordID wos000477943300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg48BljO-OMRmJWxWUb9vHagzxpYrDgB6QLCdx1kybW7XpVPjref6I2zKNsQM5RFEaW3bfz-89-30h9JqKGvRiQYMwL9IAVmIcFIwmQaqtvFmSJ8R4W3z7TEYjOh6zL85iujDlBIhSdLVis_9KangHxNahs7cgt-8UXsAzEB3uQHa4_xPhh8omCl81NipxIM5Pp_OmnVwYl0KToXow0w27s9jLRgwq5xZj8jYPBHBfYQLVdb5LoKKy3uKbquxo6xevmn9fGnvHRKrTdgN6n4SuH2YEnbhodEzkLy8Q3roz66PJEp5-ulzg7igiWvtaeY7FkiAPbWkmz15tbKZjkJGtzeVkrc1SepWN2xOFszcwR5iFdsBjNr9quBZbnan-D2nmfQw797UzbnvhuhceZtxE5O3EJGO0h3aGH47HH73szqn1s-wm0gVbGo_Aq6O5Tpm5brNilJaTPbTrdht4aFHyEN2R6hF60FXywI6xP0Y_hgpvgQZ70GAADTagwZugwQAavAUa7EGDLWiwg8YT9PXd8cnR-8DV3QhKUGfaoEoK0AJpHUUlbGdzUoLWWhc5k3GVwLomKa0oEWlUyprWuRQ5q5kEvT4UUVVpu_JT1FNTJZ8jXNTa6JDVcGVpWUrGoLNasFSGssxC2UdJ9wfy0iWl17VRzvnfyNdHgW81s0lZbviedLThTrG0CiMHwN3Q8lVHSg58VxvThJLT5YLH2pciYymL--iZpbEfSwKYT8OU7N9ynC_Q_fWyOkC9dr6UL9G98rJtFvNDdJeM6aFD7G8YXrS8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+approximation+algorithm+for+graph+partitioning+via+deterministic+annealing+neural+network&rft.jtitle=Neural+networks&rft.au=Wu%2C+Zhengtian&rft.au=Karimi%2C+Hamid+Reza&rft.au=Dang%2C+Chuangyin&rft.date=2019-09-01&rft.issn=0893-6080&rft.volume=117&rft.spage=191&rft.epage=200&rft_id=info:doi/10.1016%2Fj.neunet.2019.05.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neunet_2019_05_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon