An approximation algorithm for graph partitioning via deterministic annealing neural network
Graph partitioning, a classical NP-hard combinatorial optimization problem, is widely applied to industrial or management problems. In this study, an approximated solution of the graph partitioning problem is obtained by using a deterministic annealing neural network algorithm. The algorithm is a co...
Uloženo v:
| Vydáno v: | Neural networks Ročník 117; s. 191 - 200 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Ltd
01.09.2019
|
| Témata: | |
| ISSN: | 0893-6080, 1879-2782, 1879-2782 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Graph partitioning, a classical NP-hard combinatorial optimization problem, is widely applied to industrial or management problems. In this study, an approximated solution of the graph partitioning problem is obtained by using a deterministic annealing neural network algorithm. The algorithm is a continuation method that attempts to obtain a high-quality solution by following a path of minimum points of a barrier problem as the barrier parameter is reduced from a sufficiently large positive number to 0. With the barrier parameter assumed to be any positive number, one minimum solution of the barrier problem can be found by the algorithm in a feasible descent direction. With a globally convergent iterative procedure, the feasible descent direction could be obtained by renewing Lagrange multipliers red. A distinctive feature of it is that the upper and lower bounds on the variables will be automatically satisfied on the condition that the step length is a value from 0 to 1. Four well-known algorithms are compared with the proposed one on 100 test samples. Simulation results show effectiveness of the proposed algorithm. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0893-6080 1879-2782 1879-2782 |
| DOI: | 10.1016/j.neunet.2019.05.010 |