An approximation algorithm for graph partitioning via deterministic annealing neural network
Graph partitioning, a classical NP-hard combinatorial optimization problem, is widely applied to industrial or management problems. In this study, an approximated solution of the graph partitioning problem is obtained by using a deterministic annealing neural network algorithm. The algorithm is a co...
Saved in:
| Published in: | Neural networks Vol. 117; pp. 191 - 200 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Ltd
01.09.2019
|
| Subjects: | |
| ISSN: | 0893-6080, 1879-2782, 1879-2782 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Graph partitioning, a classical NP-hard combinatorial optimization problem, is widely applied to industrial or management problems. In this study, an approximated solution of the graph partitioning problem is obtained by using a deterministic annealing neural network algorithm. The algorithm is a continuation method that attempts to obtain a high-quality solution by following a path of minimum points of a barrier problem as the barrier parameter is reduced from a sufficiently large positive number to 0. With the barrier parameter assumed to be any positive number, one minimum solution of the barrier problem can be found by the algorithm in a feasible descent direction. With a globally convergent iterative procedure, the feasible descent direction could be obtained by renewing Lagrange multipliers red. A distinctive feature of it is that the upper and lower bounds on the variables will be automatically satisfied on the condition that the step length is a value from 0 to 1. Four well-known algorithms are compared with the proposed one on 100 test samples. Simulation results show effectiveness of the proposed algorithm. |
|---|---|
| AbstractList | Graph partitioning, a classical NP-hard combinatorial optimization problem, is widely applied to industrial or management problems. In this study, an approximated solution of the graph partitioning problem is obtained by using a deterministic annealing neural network algorithm. The algorithm is a continuation method that attempts to obtain a high-quality solution by following a path of minimum points of a barrier problem as the barrier parameter is reduced from a sufficiently large positive number to 0. With the barrier parameter assumed to be any positive number, one minimum solution of the barrier problem can be found by the algorithm in a feasible descent direction. With a globally convergent iterative procedure, the feasible descent direction could be obtained by renewing Lagrange multipliers red. A distinctive feature of it is that the upper and lower bounds on the variables will be automatically satisfied on the condition that the step length is a value from 0 to 1. Four well-known algorithms are compared with the proposed one on 100 test samples. Simulation results show effectiveness of the proposed algorithm. Graph partitioning, a classical NP-hard combinatorial optimization problem, is widely applied to industrial or management problems. In this study, an approximated solution of the graph partitioning problem is obtained by using a deterministic annealing neural network algorithm. The algorithm is a continuation method that attempts to obtain a high-quality solution by following a path of minimum points of a barrier problem as the barrier parameter is reduced from a sufficiently large positive number to 0. With the barrier parameter assumed to be any positive number, one minimum solution of the barrier problem can be found by the algorithm in a feasible descent direction. With a globally convergent iterative procedure, the feasible descent direction could be obtained by renewing Lagrange multipliers red. A distinctive feature of it is that the upper and lower bounds on the variables will be automatically satisfied on the condition that the step length is a value from 0 to 1. Four well-known algorithms are compared with the proposed one on 100 test samples. Simulation results show effectiveness of the proposed algorithm.Graph partitioning, a classical NP-hard combinatorial optimization problem, is widely applied to industrial or management problems. In this study, an approximated solution of the graph partitioning problem is obtained by using a deterministic annealing neural network algorithm. The algorithm is a continuation method that attempts to obtain a high-quality solution by following a path of minimum points of a barrier problem as the barrier parameter is reduced from a sufficiently large positive number to 0. With the barrier parameter assumed to be any positive number, one minimum solution of the barrier problem can be found by the algorithm in a feasible descent direction. With a globally convergent iterative procedure, the feasible descent direction could be obtained by renewing Lagrange multipliers red. A distinctive feature of it is that the upper and lower bounds on the variables will be automatically satisfied on the condition that the step length is a value from 0 to 1. Four well-known algorithms are compared with the proposed one on 100 test samples. Simulation results show effectiveness of the proposed algorithm. |
| Author | Dang, Chuangyin Wu, Zhengtian Karimi, Hamid Reza |
| Author_xml | – sequence: 1 givenname: Zhengtian orcidid: 0000-0001-7702-5730 surname: Wu fullname: Wu, Zhengtian email: wzht8@mail.usts.edu.cn organization: School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China – sequence: 2 givenname: Hamid Reza surname: Karimi fullname: Karimi, Hamid Reza email: hamidreza.karimi@polimi.it organization: Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy – sequence: 3 givenname: Chuangyin surname: Dang fullname: Dang, Chuangyin organization: Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31174047$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkE1v1DAQhi3Uim4L_wChHLkk9dc6NgekqiofUqVeyg3J8tqTrZfEDra30H9fhy0cONDTaDTPO5p5TtFRiAEQekNwRzAR57suwD5A6SgmqsPrDhP8Aq2I7FVLe0mP0ApLxVqBJT5BpznvMMZCcvYSnTBCeo55v0LfLkJj5jnFX34yxcfajduYfLmbmiGmZpvMfNfMJhW_TH3YNvfeNA4KpMkHn4u3jQkBzLjM6knJjLWUnzF9f4WOBzNmeP1Uz9DXj1e3l5_b65tPXy4vrlvLBC2tYxtClRwIsVz2oreCs2EjFFDHBDY9l072hhMLgxwEGKEGBUQwbIhzTFJ2ht4d9tY_fuwhFz35bGEcTYC4z5pSTslacbWgb5_Q_WYCp-dU_04P-o-RCvADYFPMOcHwFyFYL-L1Th_E60W8xmtdxdfY-39i1pffQksyfnwu_OEQhirp3kPS2XoIFpxPYIt20f9_wSP6y6KC |
| CitedBy_id | crossref_primary_10_1016_j_amc_2024_129114 crossref_primary_10_1007_s40815_022_01335_7 crossref_primary_10_1080_23335777_2023_2175915 crossref_primary_10_32604_cmes_2023_025500 crossref_primary_10_1016_j_neunet_2020_08_021 crossref_primary_10_1177_0959651820933380 crossref_primary_10_1002_net_22257 crossref_primary_10_1177_01423312211028217 crossref_primary_10_3390_app13053216 crossref_primary_10_1016_j_jfranklin_2022_06_009 crossref_primary_10_1177_0959651820953679 crossref_primary_10_32604_cmes_2022_020656 crossref_primary_10_1016_j_neucom_2019_11_087 crossref_primary_10_32604_cmes_2022_020771 crossref_primary_10_32604_cmes_2022_022279 crossref_primary_10_1002_rnc_5500 crossref_primary_10_1109_TFUZZ_2020_2982618 crossref_primary_10_1109_TCSI_2020_3004170 crossref_primary_10_1016_j_ins_2021_02_072 crossref_primary_10_1016_j_chaos_2024_114625 crossref_primary_10_1177_0959651820958208 crossref_primary_10_1016_j_amc_2021_126518 crossref_primary_10_1016_j_ins_2020_01_004 crossref_primary_10_1007_s40815_022_01348_2 crossref_primary_10_1016_j_energy_2025_136600 crossref_primary_10_1177_13835416241304336 crossref_primary_10_1007_s42835_023_01417_y crossref_primary_10_1109_TMECH_2019_2929224 crossref_primary_10_1016_j_neunet_2020_07_033 crossref_primary_10_32604_cmes_2022_023217 crossref_primary_10_3390_electronics13224455 crossref_primary_10_1007_s40815_020_00949_z crossref_primary_10_1016_j_future_2023_12_008 crossref_primary_10_1007_s00170_019_04201_3 crossref_primary_10_1007_s40815_020_00892_z crossref_primary_10_1177_0959651820939345 crossref_primary_10_1016_j_neucom_2019_10_066 crossref_primary_10_1007_s00170_019_04102_5 crossref_primary_10_1177_0959651820937085 crossref_primary_10_32604_cmes_2023_027425 crossref_primary_10_1049_iet_cta_2020_0901 crossref_primary_10_1016_j_neucom_2021_06_050 crossref_primary_10_1007_s11760_023_02989_y crossref_primary_10_1080_21642583_2023_2207602 crossref_primary_10_1016_j_ijleo_2020_164196 crossref_primary_10_1016_j_eswa_2023_120762 crossref_primary_10_1016_j_mechatronics_2023_103066 crossref_primary_10_1177_0959651820935668 crossref_primary_10_1016_j_jfranklin_2023_01_033 crossref_primary_10_1177_0959651820937841 crossref_primary_10_1016_j_jfranklin_2020_04_061 crossref_primary_10_1016_j_ins_2022_11_073 crossref_primary_10_1016_j_amc_2019_124854 crossref_primary_10_1049_iet_its_2019_0258 crossref_primary_10_1007_s42835_023_01376_4 crossref_primary_10_1049_joe_2019_0882 crossref_primary_10_1007_s00170_019_04111_4 crossref_primary_10_1007_s00170_020_05417_4 crossref_primary_10_1080_23335777_2020_1716269 crossref_primary_10_3390_pr10071236 crossref_primary_10_1177_09596518241266865 crossref_primary_10_1007_s40815_020_00890_1 crossref_primary_10_1016_j_asoc_2024_112109 crossref_primary_10_1007_s41019_021_00156_2 crossref_primary_10_2139_ssrn_5053244 crossref_primary_10_1002_rnc_4664 crossref_primary_10_1007_s40815_020_00898_7 crossref_primary_10_1080_21642583_2019_1674222 crossref_primary_10_1016_j_jfranklin_2019_09_007 crossref_primary_10_3390_s22186843 crossref_primary_10_1016_j_isatra_2020_05_042 crossref_primary_10_32604_cmes_2023_027010 crossref_primary_10_3390_machines10080600 |
| Cites_doi | 10.1007/s10878-018-0254-1 10.1016/j.neunet.2008.09.008 10.1137/S1064827595287997 10.1016/S0893-6080(00)00092-7 10.1109/TNNLS.2013.2280905 10.1016/S0377-2217(99)00284-2 10.1016/S0893-6080(02)00027-8 10.1137/S1064827594275339 10.1016/j.neunet.2012.12.002 10.1007/BF00339943 10.1016/j.neunet.2017.07.018 10.1073/pnas.81.10.3088 10.1016/j.neunet.2018.09.001 10.1016/j.neunet.2011.03.018 10.1016/j.amc.2017.08.031 10.1080/10556788.2016.1230209 10.1287/opre.39.5.824 10.1109/TNNLS.2017.2696582 10.1080/19942060.2018.1482476 10.1016/j.neunet.2018.07.011 10.1038/326689a0 10.1002/j.1538-7305.1970.tb01770.x |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.neunet.2019.05.010 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1879-2782 |
| EndPage | 200 |
| ExternalDocumentID | 31174047 10_1016_j_neunet_2019_05_010 S089360801930142X |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS NPM 7X8 |
| ID | FETCH-LOGICAL-c362t-d3b1298f11c48767c643fb69e2d360a748d87a41cef8f6ea69f9e1630a1dd3823 |
| ISICitedReferencesCount | 85 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477943300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0893-6080 1879-2782 |
| IngestDate | Thu Oct 02 17:07:15 EDT 2025 Tue Aug 05 11:37:59 EDT 2025 Sat Nov 29 07:18:35 EST 2025 Tue Nov 18 22:00:52 EST 2025 Fri Feb 23 02:28:38 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Graph partitioning Deterministic annealing neural network algorithm NP-hard problem Neural network Combinatorial optimization |
| Language | English |
| License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c362t-d3b1298f11c48767c643fb69e2d360a748d87a41cef8f6ea69f9e1630a1dd3823 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-7702-5730 |
| PMID | 31174047 |
| PQID | 2242159492 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2242159492 pubmed_primary_31174047 crossref_primary_10_1016_j_neunet_2019_05_010 crossref_citationtrail_10_1016_j_neunet_2019_05_010 elsevier_sciencedirect_doi_10_1016_j_neunet_2019_05_010 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neural networks |
| PublicationTitleAlternate | Neural Netw |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Moazenzadeh, Mohammadi, Shamshirband, Chau (b30) 2018; 12 Wei, Park, Karimi, Tian, Jung (b36) 2018; 29 Xu, Cui, Chen, Huang, Shao (b37) 2015 Phan, Le Nguyen, Nguyen, Bui (b32) 2018; 108 Dang, He, Hui (b10) 2002; 15 Hopfield, Tank (b21) 1985; 52 Lengauer (b28) 2012 Shi, Malik (b35) 2000 Ceberio, Mendiburu, Lozano (b6) 2017 Buluç, Meyerhenke, Safro, Sanders, Schulz (b5) 2016 Chiarandini, Dumitrescu, Stützle (b8) 2018 Recalde, Severín, Torres, Vaca (b34) 2018; 36 Bello, Pham, Le, Norouzi, Bengio (b3) 2017 Kapur (b24) 1989 Dang, Xu (b14) 2001; 14 Dang, Liang, Yang (b11) 2013; 39 Dang, Sun, Wang, Yang (b13) 2011; 24 Chalupa, D. A Memetic Algorithm for the Minimum Conductance Graph Partitioning Problem, arXiv preprint Gupta, Lal (b17) 2018 LaSalle, Karypis (b27) 2016 Prisner (b33) 1995 He, Li, Huang, Li, Huang (b18) 2014; 25 Jahani, Mohammadi (b22) 2018 Karypis, Kumar (b25) 1998; 20 Buda, Maki, Mazurowski (b4) 2018; 106 Minoux (b29) 1986 Gilbert, Miller, Teng (b16) 1998; 19 Kalayci, Battiti (b23) 2018; 318 . Dang, Ma, Liang (b12) 2009; 22 Hopfield (b20) 1984; 81 Ahmadi, Tang (b1) 1991; 39 Cochocki, Unbehauen (b9) 1993 Kernighan, Lin (b26) 1970; 49 Nguyen, Minoux (b31) 2017; 32 Durbin, Willshaw (b15) 1987; 326 Bataineh, Marler (b2) 2017; 95 Helsgaun (b19) 2000; 126 Cochocki (10.1016/j.neunet.2019.05.010_b9) 1993 Nguyen (10.1016/j.neunet.2019.05.010_b31) 2017; 32 Recalde (10.1016/j.neunet.2019.05.010_b34) 2018; 36 Xu (10.1016/j.neunet.2019.05.010_b37) 2015 He (10.1016/j.neunet.2019.05.010_b18) 2014; 25 Helsgaun (10.1016/j.neunet.2019.05.010_b19) 2000; 126 Minoux (10.1016/j.neunet.2019.05.010_b29) 1986 Lengauer (10.1016/j.neunet.2019.05.010_b28) 2012 Ceberio (10.1016/j.neunet.2019.05.010_b6) 2017 Prisner (10.1016/j.neunet.2019.05.010_b33) 1995 Dang (10.1016/j.neunet.2019.05.010_b10) 2002; 15 Bataineh (10.1016/j.neunet.2019.05.010_b2) 2017; 95 Shi (10.1016/j.neunet.2019.05.010_b35) 2000 Bello (10.1016/j.neunet.2019.05.010_b3) 2017 Phan (10.1016/j.neunet.2019.05.010_b32) 2018; 108 Buda (10.1016/j.neunet.2019.05.010_b4) 2018; 106 Wei (10.1016/j.neunet.2019.05.010_b36) 2018; 29 LaSalle (10.1016/j.neunet.2019.05.010_b27) 2016 Moazenzadeh (10.1016/j.neunet.2019.05.010_b30) 2018; 12 10.1016/j.neunet.2019.05.010_b7 Kernighan (10.1016/j.neunet.2019.05.010_b26) 1970; 49 Buluç (10.1016/j.neunet.2019.05.010_b5) 2016 Gupta (10.1016/j.neunet.2019.05.010_b17) 2018 Ahmadi (10.1016/j.neunet.2019.05.010_b1) 1991; 39 Hopfield (10.1016/j.neunet.2019.05.010_b21) 1985; 52 Kalayci (10.1016/j.neunet.2019.05.010_b23) 2018; 318 Chiarandini (10.1016/j.neunet.2019.05.010_b8) 2018 Durbin (10.1016/j.neunet.2019.05.010_b15) 1987; 326 Gilbert (10.1016/j.neunet.2019.05.010_b16) 1998; 19 Hopfield (10.1016/j.neunet.2019.05.010_b20) 1984; 81 Dang (10.1016/j.neunet.2019.05.010_b14) 2001; 14 Kapur (10.1016/j.neunet.2019.05.010_b24) 1989 Karypis (10.1016/j.neunet.2019.05.010_b25) 1998; 20 Dang (10.1016/j.neunet.2019.05.010_b11) 2013; 39 Jahani (10.1016/j.neunet.2019.05.010_b22) 2018 Dang (10.1016/j.neunet.2019.05.010_b13) 2011; 24 Dang (10.1016/j.neunet.2019.05.010_b12) 2009; 22 |
| References_xml | – start-page: 1629 year: 2017 end-page: 1636 ident: b6 article-title: A square lattice probability model for optimising the graph partitioning problem publication-title: 2017 IEEE congress on evolutionary computation – volume: 32 start-page: 892 year: 2017 end-page: 903 ident: b31 article-title: Improved linearized models for graph partitioning problem under capacity constraints publication-title: Optimization Methods & Software – volume: 25 start-page: 824 year: 2014 end-page: 830 ident: b18 article-title: A recurrent neural network for solving bilevel linear programming problem publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 39 start-page: 1 year: 2013 end-page: 11 ident: b11 article-title: A deterministic annealing algorithm for approximating a solution of the linearly constrained nonconvex quadratic minimization problem publication-title: Neural Networks – start-page: 1 year: 2018 end-page: 13 ident: b22 article-title: A comparison between the application of empirical and ANN methods for estimation of daily global solar radiation in iran publication-title: Theoretical and Applied Climatology – start-page: 117 year: 2016 end-page: 158 ident: b5 article-title: Recent advances in graph partitioning publication-title: Algorithm engineering – volume: 318 start-page: 227 year: 2018 end-page: 244 ident: b23 article-title: A reactive self-tuning scheme for multilevel graph partitioning publication-title: Applied Mathematics and Computation – reference: Chalupa, D. A Memetic Algorithm for the Minimum Conductance Graph Partitioning Problem, arXiv preprint – start-page: 1 year: 2015 ident: b37 article-title: Heterogeneous environment aware streaming graph partitioning publication-title: IEEE Transactions on Knowledge & Data Engineering – volume: 36 start-page: 916 year: 2018 end-page: 936 ident: b34 article-title: An exact approach for the balanced k-way partitioning problem with weight constraints and its application to sports team realignment publication-title: Journal of Combinatorial Optimization – volume: 49 start-page: 291 year: 1970 end-page: 307 ident: b26 article-title: An efficient heuristic procedure for partitioning graphs publication-title: The Bell System Technical Journal – volume: 39 start-page: 824 year: 1991 end-page: 835 ident: b1 article-title: An operation partitioning problem for automated assembly system design publication-title: Operations Research – volume: 15 start-page: 441 year: 2002 end-page: 458 ident: b10 article-title: A deterministic annealing algorithm for approximating a solution of the max-bisection problem publication-title: Neural Networks – volume: 14 start-page: 217 year: 2001 end-page: 230 ident: b14 article-title: A globally convergent Lagrange and barrier function iterative algorithm for the traveling salesman problem publication-title: Neural Networks – volume: 81 start-page: 3088 year: 1984 end-page: 3092 ident: b20 article-title: Neurons with graded response have collective computational properties like those of two-state neurons publication-title: Proceedings of the national academy of sciences – year: 2012 ident: b28 article-title: Combinatorial algorithms for integrated circuit layout – year: 2018 ident: b8 article-title: Stochastic local search algorithms for the graph colouring problem publication-title: Handbook of approximation algorithms and metaheuristics – volume: 326 start-page: 689 year: 1987 ident: b15 article-title: An analogue approach to the travelling salesman problem using an elastic net method publication-title: Nature – year: 1986 ident: b29 article-title: Mathematical programming: theory and algorithms – year: 1995 ident: b33 article-title: Graph dynamics, vol. 338 – volume: 22 start-page: 58 year: 2009 end-page: 66 ident: b12 article-title: A deterministic annealing algorithm for approximating a solution of the min-bisection problem publication-title: Neural Networks – volume: 52 start-page: 141 year: 1985 end-page: 152 ident: b21 article-title: Neural computation of decisions in optimization problems publication-title: Biological Cybernetics – volume: 126 start-page: 106 year: 2000 end-page: 130 ident: b19 article-title: An effective implementation of the lin-kernighan traveling salesman heuristic publication-title: European Journal of Operational Research – volume: 108 start-page: 533 year: 2018 end-page: 543 ident: b32 article-title: DGCNN: A convolutional neural network over large-scale labeled graphs publication-title: Neural Networks – volume: 106 start-page: 249 year: 2018 end-page: 259 ident: b4 article-title: A systematic study of the class imbalance problem in convolutional neural networks publication-title: Neural Networks – volume: 24 start-page: 699 year: 2011 end-page: 708 ident: b13 article-title: A deterministic annealing algorithm for the minimum concave cost network flow problem publication-title: Neural Networks – year: 2018 ident: b17 article-title: Comparison of some approximate algorithms proposed for traveling salesmen and graph partitioning problems publication-title: Proceedings of 3rd international conference on internet of things and connected technologies – reference: . – volume: 95 start-page: 1 year: 2017 end-page: 9 ident: b2 article-title: Neural network for regression problems with reduced training sets publication-title: Neural Networks – year: 1989 ident: b24 article-title: Maximum-entropy models in science and engineering – start-page: 107 year: 2000 ident: b35 article-title: Normalized cuts and image segmentation publication-title: Departmental Papers (CIS) – volume: 29 start-page: 2488 year: 2018 end-page: 2501 ident: b36 article-title: Improved stability and stabilization results for stochastic synchronization of continuous-time semi-Markovian jump neural networks with time-varying delay publication-title: IEEE Transactions on Neural networks and Learning Systems – start-page: 236 year: 2016 end-page: 241 ident: b27 article-title: A parallel hill-climbing refinement algorithm for graph partitioning publication-title: 45th international conference on parallel processing (ICPP) – year: 2017 ident: b3 article-title: Neural combinatorial optimization – volume: 19 start-page: 2091 year: 1998 end-page: 2110 ident: b16 article-title: Geometric mesh partitioning: implementation and experiments publication-title: SIAM Journal on Scientific Computing – volume: 12 start-page: 584 year: 2018 end-page: 597 ident: b30 article-title: Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran publication-title: Engineering Applications of Computational Fluid Mechanics – year: 1993 ident: b9 article-title: Neural networks for optimization and signal processing – volume: 20 start-page: 359 year: 1998 end-page: 392 ident: b25 article-title: A fast and high quality multilevel scheme for partitioning irregular graphs publication-title: SIAM Journal on Scientific Computing – volume: 36 start-page: 916 issue: 3 year: 2018 ident: 10.1016/j.neunet.2019.05.010_b34 article-title: An exact approach for the balanced k-way partitioning problem with weight constraints and its application to sports team realignment publication-title: Journal of Combinatorial Optimization doi: 10.1007/s10878-018-0254-1 – start-page: 107 year: 2000 ident: 10.1016/j.neunet.2019.05.010_b35 article-title: Normalized cuts and image segmentation publication-title: Departmental Papers (CIS) – year: 1989 ident: 10.1016/j.neunet.2019.05.010_b24 – year: 2017 ident: 10.1016/j.neunet.2019.05.010_b3 – volume: 22 start-page: 58 issue: 1 year: 2009 ident: 10.1016/j.neunet.2019.05.010_b12 article-title: A deterministic annealing algorithm for approximating a solution of the min-bisection problem publication-title: Neural Networks doi: 10.1016/j.neunet.2008.09.008 – volume: 20 start-page: 359 issue: 1 year: 1998 ident: 10.1016/j.neunet.2019.05.010_b25 article-title: A fast and high quality multilevel scheme for partitioning irregular graphs publication-title: SIAM Journal on Scientific Computing doi: 10.1137/S1064827595287997 – volume: 14 start-page: 217 issue: 2 year: 2001 ident: 10.1016/j.neunet.2019.05.010_b14 article-title: A globally convergent Lagrange and barrier function iterative algorithm for the traveling salesman problem publication-title: Neural Networks doi: 10.1016/S0893-6080(00)00092-7 – volume: 25 start-page: 824 issue: 4 year: 2014 ident: 10.1016/j.neunet.2019.05.010_b18 article-title: A recurrent neural network for solving bilevel linear programming problem publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2013.2280905 – start-page: 1629 year: 2017 ident: 10.1016/j.neunet.2019.05.010_b6 article-title: A square lattice probability model for optimising the graph partitioning problem – year: 1993 ident: 10.1016/j.neunet.2019.05.010_b9 – volume: 126 start-page: 106 issue: 1 year: 2000 ident: 10.1016/j.neunet.2019.05.010_b19 article-title: An effective implementation of the lin-kernighan traveling salesman heuristic publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(99)00284-2 – volume: 15 start-page: 441 issue: 3 year: 2002 ident: 10.1016/j.neunet.2019.05.010_b10 article-title: A deterministic annealing algorithm for approximating a solution of the max-bisection problem publication-title: Neural Networks doi: 10.1016/S0893-6080(02)00027-8 – volume: 19 start-page: 2091 issue: 6 year: 1998 ident: 10.1016/j.neunet.2019.05.010_b16 article-title: Geometric mesh partitioning: implementation and experiments publication-title: SIAM Journal on Scientific Computing doi: 10.1137/S1064827594275339 – volume: 39 start-page: 1 year: 2013 ident: 10.1016/j.neunet.2019.05.010_b11 article-title: A deterministic annealing algorithm for approximating a solution of the linearly constrained nonconvex quadratic minimization problem publication-title: Neural Networks doi: 10.1016/j.neunet.2012.12.002 – volume: 52 start-page: 141 issue: 3 year: 1985 ident: 10.1016/j.neunet.2019.05.010_b21 article-title: Neural computation of decisions in optimization problems publication-title: Biological Cybernetics doi: 10.1007/BF00339943 – volume: 95 start-page: 1 year: 2017 ident: 10.1016/j.neunet.2019.05.010_b2 article-title: Neural network for regression problems with reduced training sets publication-title: Neural Networks doi: 10.1016/j.neunet.2017.07.018 – year: 2012 ident: 10.1016/j.neunet.2019.05.010_b28 – volume: 81 start-page: 3088 issue: 10 year: 1984 ident: 10.1016/j.neunet.2019.05.010_b20 article-title: Neurons with graded response have collective computational properties like those of two-state neurons publication-title: Proceedings of the national academy of sciences doi: 10.1073/pnas.81.10.3088 – year: 1986 ident: 10.1016/j.neunet.2019.05.010_b29 – volume: 108 start-page: 533 year: 2018 ident: 10.1016/j.neunet.2019.05.010_b32 article-title: DGCNN: A convolutional neural network over large-scale labeled graphs publication-title: Neural Networks doi: 10.1016/j.neunet.2018.09.001 – year: 1995 ident: 10.1016/j.neunet.2019.05.010_b33 – volume: 24 start-page: 699 issue: 7 year: 2011 ident: 10.1016/j.neunet.2019.05.010_b13 article-title: A deterministic annealing algorithm for the minimum concave cost network flow problem publication-title: Neural Networks doi: 10.1016/j.neunet.2011.03.018 – volume: 318 start-page: 227 year: 2018 ident: 10.1016/j.neunet.2019.05.010_b23 article-title: A reactive self-tuning scheme for multilevel graph partitioning publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2017.08.031 – year: 2018 ident: 10.1016/j.neunet.2019.05.010_b17 article-title: Comparison of some approximate algorithms proposed for traveling salesmen and graph partitioning problems – ident: 10.1016/j.neunet.2019.05.010_b7 – volume: 32 start-page: 892 issue: 4 year: 2017 ident: 10.1016/j.neunet.2019.05.010_b31 article-title: Improved linearized models for graph partitioning problem under capacity constraints publication-title: Optimization Methods & Software doi: 10.1080/10556788.2016.1230209 – volume: 39 start-page: 824 issue: 5 year: 1991 ident: 10.1016/j.neunet.2019.05.010_b1 article-title: An operation partitioning problem for automated assembly system design publication-title: Operations Research doi: 10.1287/opre.39.5.824 – start-page: 1 year: 2018 ident: 10.1016/j.neunet.2019.05.010_b22 article-title: A comparison between the application of empirical and ANN methods for estimation of daily global solar radiation in iran publication-title: Theoretical and Applied Climatology – volume: 29 start-page: 2488 issue: 6 year: 2018 ident: 10.1016/j.neunet.2019.05.010_b36 article-title: Improved stability and stabilization results for stochastic synchronization of continuous-time semi-Markovian jump neural networks with time-varying delay publication-title: IEEE Transactions on Neural networks and Learning Systems doi: 10.1109/TNNLS.2017.2696582 – start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.neunet.2019.05.010_b37 article-title: Heterogeneous environment aware streaming graph partitioning publication-title: IEEE Transactions on Knowledge & Data Engineering – start-page: 236 year: 2016 ident: 10.1016/j.neunet.2019.05.010_b27 article-title: A parallel hill-climbing refinement algorithm for graph partitioning – volume: 12 start-page: 584 issue: 1 year: 2018 ident: 10.1016/j.neunet.2019.05.010_b30 article-title: Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran publication-title: Engineering Applications of Computational Fluid Mechanics doi: 10.1080/19942060.2018.1482476 – volume: 106 start-page: 249 year: 2018 ident: 10.1016/j.neunet.2019.05.010_b4 article-title: A systematic study of the class imbalance problem in convolutional neural networks publication-title: Neural Networks doi: 10.1016/j.neunet.2018.07.011 – start-page: 117 year: 2016 ident: 10.1016/j.neunet.2019.05.010_b5 article-title: Recent advances in graph partitioning – year: 2018 ident: 10.1016/j.neunet.2019.05.010_b8 article-title: Stochastic local search algorithms for the graph colouring problem – volume: 326 start-page: 689 issue: 6114 year: 1987 ident: 10.1016/j.neunet.2019.05.010_b15 article-title: An analogue approach to the travelling salesman problem using an elastic net method publication-title: Nature doi: 10.1038/326689a0 – volume: 49 start-page: 291 issue: 2 year: 1970 ident: 10.1016/j.neunet.2019.05.010_b26 article-title: An efficient heuristic procedure for partitioning graphs publication-title: The Bell System Technical Journal doi: 10.1002/j.1538-7305.1970.tb01770.x |
| SSID | ssj0006843 |
| Score | 2.5633585 |
| Snippet | Graph partitioning, a classical NP-hard combinatorial optimization problem, is widely applied to industrial or management problems. In this study, an... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 191 |
| SubjectTerms | Combinatorial optimization Deterministic annealing neural network algorithm Graph partitioning Neural network NP-hard problem |
| Title | An approximation algorithm for graph partitioning via deterministic annealing neural network |
| URI | https://dx.doi.org/10.1016/j.neunet.2019.05.010 https://www.ncbi.nlm.nih.gov/pubmed/31174047 https://www.proquest.com/docview/2242159492 |
| Volume | 117 |
| WOSCitedRecordID | wos000477943300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpuoe9rLsvuxQN9hZcfIslPYauYzfCYN3mh4GRbblxSZWQ2iHdr9_RzUkopdtgEIxxIlvW-XLOJ-lcEHoTBSUHK8m9UVKWXkwD4eVJSL0ozxPOaVD4un7K989kMqFpyr70eq2LhVnNiJR0vWaL_ypquAbCVqGzfyHu7qZwAc5B6HAEscPxjwQ_liZR-Lo2UYlDPjubL-tmeqFdCnWG6uFCNXRrsauaD0vrFqPzNg85aF-uA9VVvkuQojTe4ttUdrLzTUfNf7R6v2Mq5FmzBb1PXNUP04aOX9QqJvJXZxDe2jXr42kLZ1c2F7hdigg2vlZ2fczFyGwckrQaY5GX-KZe05EwapYS5oWE7uphE8RpNWlginhZo2zSmV7X92bp4fwIBgNeV3nqMZOI1d_Yt87r8KvqiuoJkFaYGYbpHtoPyYjRPtoffzhJP3YmPKHG3dJ13cVcasfA68-6idPcNGfR3OX0PrpnJx14bMDyAPWEfIgOXEEPbPX7I_RzLPEOdnCHHQzYwRo7eBs7GLCDd7CDO-xggx1sEfIYfXt3cnr83rPlN7wCWE3jlVEOZJBWQVDArDYhBZDXKk-YCEsYRU5iWlLC46AQFa0SwRNWMQH03udBWart5SeoL-dSPEM4V7yb-gULQrgXfLiaChegKEKfAEMeoMgNYFbY3PSqRMosc06I55kZ9kwNe-aPMhj2AfK6VguTm-WW3xMnm8zyS8MbM4DTLS1fO1FmoH7VnhqXYt5eZqFyqRixmIUD9NTIuOtLBIiOQdc9_-fnvkB3N_-zl6jfLFvxCt0pVk19uTxEeySlhxa7vwF8-bmE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+approximation+algorithm+for+graph+partitioning+via+deterministic+annealing+neural+network&rft.jtitle=Neural+networks&rft.au=Wu%2C+Zhengtian&rft.au=Karimi%2C+Hamid+Reza&rft.au=Dang%2C+Chuangyin&rft.date=2019-09-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.eissn=1879-2782&rft.volume=117&rft.spage=191&rft.epage=200&rft_id=info:doi/10.1016%2Fj.neunet.2019.05.010&rft.externalDocID=S089360801930142X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |