First-order Answer Set Programming as Constructive Proof Search
We propose an interpretation of the first-order answer set programming (FOASP) in terms of intuitionistic proof theory. It is obtained by two polynomial translations between FOASP and the bounded-arity fragment of the Σ1 level of the Mints hierarchy in first-order intuitionistic logic. It follows th...
Uloženo v:
| Vydáno v: | Theory and practice of logic programming Ročník 18; číslo 3-4; s. 673 - 690 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cambridge, UK
Cambridge University Press
01.07.2018
|
| Témata: | |
| ISSN: | 1471-0684, 1475-3081 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We propose an interpretation of the first-order answer set programming (FOASP) in terms of intuitionistic proof theory. It is obtained by two polynomial translations between FOASP and the bounded-arity fragment of the Σ1 level of the Mints hierarchy in first-order intuitionistic logic. It follows that Σ1 formulas using predicates of fixed arity (in particular unary) is of the same strength as FOASP. Our construction reveals a close similarity between constructive provability and stable entailment, or equivalently, between the construction of an answer set and an intuitionistic refutation. This paper is under consideration for publication in Theory and Practice of Logic Programming |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1471-0684 1475-3081 |
| DOI: | 10.1017/S147106841800008X |