First-order Answer Set Programming as Constructive Proof Search

We propose an interpretation of the first-order answer set programming (FOASP) in terms of intuitionistic proof theory. It is obtained by two polynomial translations between FOASP and the bounded-arity fragment of the Σ1 level of the Mints hierarchy in first-order intuitionistic logic. It follows th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory and practice of logic programming Jg. 18; H. 3-4; S. 673 - 690
Hauptverfasser: SCHUBERT, ALEKSY, URZYCZYN, PAWEŁ
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge, UK Cambridge University Press 01.07.2018
Schlagworte:
ISSN:1471-0684, 1475-3081
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose an interpretation of the first-order answer set programming (FOASP) in terms of intuitionistic proof theory. It is obtained by two polynomial translations between FOASP and the bounded-arity fragment of the Σ1 level of the Mints hierarchy in first-order intuitionistic logic. It follows that Σ1 formulas using predicates of fixed arity (in particular unary) is of the same strength as FOASP. Our construction reveals a close similarity between constructive provability and stable entailment, or equivalently, between the construction of an answer set and an intuitionistic refutation. This paper is under consideration for publication in Theory and Practice of Logic Programming
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1471-0684
1475-3081
DOI:10.1017/S147106841800008X