First-order Answer Set Programming as Constructive Proof Search
We propose an interpretation of the first-order answer set programming (FOASP) in terms of intuitionistic proof theory. It is obtained by two polynomial translations between FOASP and the bounded-arity fragment of the Σ1 level of the Mints hierarchy in first-order intuitionistic logic. It follows th...
Gespeichert in:
| Veröffentlicht in: | Theory and practice of logic programming Jg. 18; H. 3-4; S. 673 - 690 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cambridge, UK
Cambridge University Press
01.07.2018
|
| Schlagworte: | |
| ISSN: | 1471-0684, 1475-3081 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We propose an interpretation of the first-order answer set programming (FOASP) in terms of intuitionistic proof theory. It is obtained by two polynomial translations between FOASP and the bounded-arity fragment of the Σ1 level of the Mints hierarchy in first-order intuitionistic logic. It follows that Σ1 formulas using predicates of fixed arity (in particular unary) is of the same strength as FOASP. Our construction reveals a close similarity between constructive provability and stable entailment, or equivalently, between the construction of an answer set and an intuitionistic refutation. This paper is under consideration for publication in Theory and Practice of Logic Programming |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1471-0684 1475-3081 |
| DOI: | 10.1017/S147106841800008X |