Generalized forward–backward splitting with penalization for monotone inclusion problems

We introduce a generalized forward–backward splitting method with penalty term for solving monotone inclusion problems involving the sum of a finite number of maximally monotone operators and the normal cone to the nonempty set of zeros of another maximally monotone operator. We show weak ergodic co...

Full description

Saved in:
Bibliographic Details
Published in:Journal of global optimization Vol. 73; no. 4; pp. 825 - 847
Main Authors: Nimana, Nimit, Petrot, Narin
Format: Journal Article
Language:English
Published: New York Springer US 15.04.2019
Springer
Springer Nature B.V
Subjects:
ISSN:0925-5001, 1573-2916
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce a generalized forward–backward splitting method with penalty term for solving monotone inclusion problems involving the sum of a finite number of maximally monotone operators and the normal cone to the nonempty set of zeros of another maximally monotone operator. We show weak ergodic convergence of the generated sequence of iterates to a solution of the considered monotone inclusion problem, provided that the condition corresponding to the Fitzpatrick function of the operator describing the set of the normal cone is fulfilled. Under strong monotonicity of an operator, we show strong convergence of the iterates. Furthermore, we utilize the proposed method for minimizing a large-scale hierarchical minimization problem concerning the sum of differentiable and nondifferentiable convex functions subject to the set of minima of another differentiable convex function. We illustrate the functionality of the method through numerical experiments addressing constrained elastic net and generalized Heron location problems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-018-00730-5