Generalized forward–backward splitting with penalization for monotone inclusion problems

We introduce a generalized forward–backward splitting method with penalty term for solving monotone inclusion problems involving the sum of a finite number of maximally monotone operators and the normal cone to the nonempty set of zeros of another maximally monotone operator. We show weak ergodic co...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of global optimization Ročník 73; číslo 4; s. 825 - 847
Hlavní autoři: Nimana, Nimit, Petrot, Narin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 15.04.2019
Springer
Springer Nature B.V
Témata:
ISSN:0925-5001, 1573-2916
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We introduce a generalized forward–backward splitting method with penalty term for solving monotone inclusion problems involving the sum of a finite number of maximally monotone operators and the normal cone to the nonempty set of zeros of another maximally monotone operator. We show weak ergodic convergence of the generated sequence of iterates to a solution of the considered monotone inclusion problem, provided that the condition corresponding to the Fitzpatrick function of the operator describing the set of the normal cone is fulfilled. Under strong monotonicity of an operator, we show strong convergence of the iterates. Furthermore, we utilize the proposed method for minimizing a large-scale hierarchical minimization problem concerning the sum of differentiable and nondifferentiable convex functions subject to the set of minima of another differentiable convex function. We illustrate the functionality of the method through numerical experiments addressing constrained elastic net and generalized Heron location problems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-018-00730-5