Improved Constant-Time Approximation Algorithms for Maximum Matchings and Other Optimization Problems

We study constant-time approximation algorithms for bounded-degree graphs, which run in time independent of the number of vertices $n$. We present an algorithm that decides whether a vertex is contained in a some fixed maximal independent set with expected query complexity $O(d^2)$, where $d$ is the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on computing Ročník 41; číslo 4; s. 1074 - 1093
Hlavní autoři: Yoshida, Yuichi, Yamamoto, Masaki, Ito, Hiro
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Society for Industrial and Applied Mathematics 01.01.2012
Témata:
ISSN:0097-5397, 1095-7111
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study constant-time approximation algorithms for bounded-degree graphs, which run in time independent of the number of vertices $n$. We present an algorithm that decides whether a vertex is contained in a some fixed maximal independent set with expected query complexity $O(d^2)$, where $d$ is the degree bound. Using this algorithm, we show constant-time approximation algorithms with certain multiplicative error and additive error $\epsilon n$ for many other problems, e.g., the maximum matching problem, the minimum vertex cover problem, and the minimum set cover problem, that run exponentially faster than existing algorithms with respect to $d$ and $\frac{1}{\epsilon}$. Our approximation algorithm for the maximum matching problem can be transformed to a two-sided error tester for the property of having a perfect matching. On the contrary, we show that every one-sided error tester for the property requires at least $\Omega(n)$ queries. [PUBLICATION ABSTRACT]
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0097-5397
1095-7111
DOI:10.1137/110828691