Improved Constant-Time Approximation Algorithms for Maximum Matchings and Other Optimization Problems
We study constant-time approximation algorithms for bounded-degree graphs, which run in time independent of the number of vertices $n$. We present an algorithm that decides whether a vertex is contained in a some fixed maximal independent set with expected query complexity $O(d^2)$, where $d$ is the...
Gespeichert in:
| Veröffentlicht in: | SIAM journal on computing Jg. 41; H. 4; S. 1074 - 1093 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2012
|
| Schlagworte: | |
| ISSN: | 0097-5397, 1095-7111 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We study constant-time approximation algorithms for bounded-degree graphs, which run in time independent of the number of vertices $n$. We present an algorithm that decides whether a vertex is contained in a some fixed maximal independent set with expected query complexity $O(d^2)$, where $d$ is the degree bound. Using this algorithm, we show constant-time approximation algorithms with certain multiplicative error and additive error $\epsilon n$ for many other problems, e.g., the maximum matching problem, the minimum vertex cover problem, and the minimum set cover problem, that run exponentially faster than existing algorithms with respect to $d$ and $\frac{1}{\epsilon}$. Our approximation algorithm for the maximum matching problem can be transformed to a two-sided error tester for the property of having a perfect matching. On the contrary, we show that every one-sided error tester for the property requires at least $\Omega(n)$ queries. [PUBLICATION ABSTRACT] |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0097-5397 1095-7111 |
| DOI: | 10.1137/110828691 |