Generalized Krein Formula, Determinants, and Selberg Zeta Function in Even Dimension
For a class of even dimensional asymptotically hyperbolic (AH) manifolds, we develop a generalized Birman-Krein theory to study scattering asymptotics and, when the curvature is constant, to analyze the Selberg zeta function. The main objects we construct for an AH manifold (X, g) are, on the one ha...
Saved in:
| Published in: | American journal of mathematics Vol. 131; no. 5; pp. 1359 - 1417 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Baltimore, MD
Johns Hopkins University Press
01.10.2009
|
| Subjects: | |
| ISSN: | 0002-9327, 1080-6377, 1080-6377 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | For a class of even dimensional asymptotically hyperbolic (AH) manifolds, we develop a generalized Birman-Krein theory to study scattering asymptotics and, when the curvature is constant, to analyze the Selberg zeta function. The main objects we construct for an AH manifold (X, g) are, on the one hand, a natural spectral function ξ for the Laplacian$\Delta _g $, which replaces the counting function of the eigenvalues in this infinite volume case, and on the other hand the determinant of the scattering operator$S_X (\lambda )$of$\Delta _g $on X. Both need to be defined through regularized functional: renormalized trace on the bulk X and regularized determinant on the conformai infinity ($(\partial {\bar X},[h_0 ])$). We show that det$S_X (\lambda )$is meromorphic in$\lambda \in \mathbb{C}$, with divisors given by resonance multiplicities and dimensions of kernels of GJMS conformal Laplacians ($(P_k )_{k \in \mathbb{N}} $of$(\partial {\bar X},[h_0 ])$)-Moreover ξ(z) is proved to be the phase of det$S_X (\frac{n} {2} + iz)$on the essential spectrum$\{ z \in \mathbb{R}^ + \} $. Applying this theory to convex co-compact quotients$X = \Gamma \backslash \mathbb{H}^{n + 1} $of hyperbolic space$\mathbb{H}^{n + 1} $, we obtain the functional equation$Z(\lambda )/Z(n - \lambda ) = (\det S_{\mathbb{H}^{n + 1} } (\lambda ))^{x(X)} /\det S_X (\lambda )$for Selberg zeta function$Z(\lambda )$of X, where X(X) is the Euler characteristic of X. This describes the poles and zeros of Z(λ), computes det$P_k $in term of$Z(\frac{n}{2} - k)/Z(\frac{n} {2} + k)$and implies a sharp Weyl asymptotic for ξ(z). |
|---|---|
| AbstractList | For a class of even dimensional asymptotically hyperbolic (AH) manifolds, we develop a generalized Birman-Krein theory to study scattering asymptotics and, when the curvature is constant, to analyze the Selberg zeta function. The main objects we construct for an AH manifold (X, g) are, on the one hand, a natural spectral function ξ for the Laplacian Δg, which replaces the counting function of the eigenvalues in this infinite volume case, and on the other hand the determinant of the scattering operator S^sub X^(λ) of Δg on X. Both need to be defined through regularized functional: renormalized trace on the bulk X and regularized determinant on the conformal infinity (..., [h^sub 0^]). We show that det S^sub X^(λ) is meromorphic in λ ∈ C, with divisors given by resonance multiplicities and dimensions of kernels of GJMS conformal Laplacians (P^sub k^)^sub k∈N^ of (..., [h^sub 0^]). Moreover ξ(z) is proved to be the phase of det ... on the essential spectrum {z ∈ R^sup +^}. Applying this theory to convex co-compact quotients X = Γ\H^sup n+1^ of hyperbolic space H^sup n+1^, we obtain the functional equation Z(λ)/Z(n - λ) = (det S^sub Hn+1^(λ))^sup χ(X)^ / det S^sub X^(λ) for Selberg zeta function Z(λ) of X, where ^sub χ^(X) is the Euler characteristic of X. This describes the poles and zeros of Z(λ), computes det P^sub k^ in term of ... and implies a sharp Weyl asymptotic for ξ(z). [PUBLICATION ABSTRACT] For a class of even dimensional asymptotically hyperbolic (AH) manifolds, we develop a generalized Birman-Krein theory to study scattering asymptotics and, when the curvature is constant, to analyze the Selberg zeta function. The main objects we construct for an AH manifold $(X,g)$ are, on the one hand, a natural spectral function $\xi$ for the Laplacian $\Delta_g$, which replaces the counting function of the eigenvalues in this infinite volume case, and on the other hand the determinant of the scattering operator $S_X(\lambda)$ of $\Delta_g$ on $X$. Both need to be defined through regularized functional: renormalized trace on the bulk $X$ and regularized determinant on the conformal infinity $(\partial\bar{X},[h_0])$. We show that $\det S_X(\lambda)$ is meromorphic in $\lambda\in{\Bbb C}$, with divisors given by resonance multiplicities and dimensions of kernels of GJMS conformal Laplacians $(P_k)_{k\in{\Bbb N}}$ of $(\partial\bar{X},[h_0])$. Moreover $\xi(z)$ is proved to be the phase of $\det S_X({n\over2}+iz)$ on the essential spectrum $\{z\in{\Bbb R}^+\}$. Applying this theory to convex co-compact quotients $X=\Gamma\backslash{\Bbb H}^{n+1}$ of hyperbolic space ${\Bbb H}^{n+1}$, we obtain the functional equation $Z(\lambda)/Z(n-\lambda)=(\det S_{{\Bbb H}^{n+1}}(\lambda))^{\chi(X)}/\det S_X(\lambda)$ for Selberg zeta function $Z(\lambda)$ of $X$, where $\chi(X)$ is the Euler characteristic of $X$. This describes the poles and zeros of $Z(\lambda)$, computes $\det P_k$ in term of $Z({n\over2}-k)/Z({n\over2}+k)$ and implies a sharp Weyl asymptotic for~$\xi(z)$. For a class of even dimensional asymptotically hyperbolic (AH) manifolds, we develop a generalized Birman-Krein theory to study scattering asymptotics and, when the curvature is constant, to analyze the Selberg zeta function. The main objects we construct for an AH manifold (X, g) are, on the one hand, a natural spectral function ξ for the Laplacian$\Delta _g $, which replaces the counting function of the eigenvalues in this infinite volume case, and on the other hand the determinant of the scattering operator$S_X (\lambda )$of$\Delta _g $on X. Both need to be defined through regularized functional: renormalized trace on the bulk X and regularized determinant on the conformai infinity ($(\partial {\bar X},[h_0 ])$). We show that det$S_X (\lambda )$is meromorphic in$\lambda \in \mathbb{C}$, with divisors given by resonance multiplicities and dimensions of kernels of GJMS conformal Laplacians ($(P_k )_{k \in \mathbb{N}} $of$(\partial {\bar X},[h_0 ])$)-Moreover ξ(z) is proved to be the phase of det$S_X (\frac{n} {2} + iz)$on the essential spectrum$\{ z \in \mathbb{R}^ + \} $. Applying this theory to convex co-compact quotients$X = \Gamma \backslash \mathbb{H}^{n + 1} $of hyperbolic space$\mathbb{H}^{n + 1} $, we obtain the functional equation$Z(\lambda )/Z(n - \lambda ) = (\det S_{\mathbb{H}^{n + 1} } (\lambda ))^{x(X)} /\det S_X (\lambda )$for Selberg zeta function$Z(\lambda )$of X, where X(X) is the Euler characteristic of X. This describes the poles and zeros of Z(λ), computes det$P_k $in term of$Z(\frac{n}{2} - k)/Z(\frac{n} {2} + k)$and implies a sharp Weyl asymptotic for ξ(z). |
| Author | Guillarmou, Colin |
| Author_xml | – sequence: 1 givenname: Colin surname: Guillarmou fullname: Guillarmou, Colin |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21990898$$DView record in Pascal Francis |
| BookMark | eNptkUFr3DAQhUVJoZu0l9wLptBLiLdjy5LsY0mySWmgh6SXXMRYHhUbW04lOZD--sps2EDpSUh8b_TmvWN25GZHjJ0WsC244F9wmLawBVDFG7YpoIZccqWO2AYAyrzhpXrHjkMY0hUUlBt2f02OPI79H-qy7556l-1mPy0jnmeXFMlPvUMXw3mGrsvuaGzJ_8oeKGK2W5yJ_eyypLl6Ipdd9hO5kF7es7cWx0AfXs4T9nN3dX9xk9_-uP528fU2N1yImNvWiroQtrOmalopK2wsobGkOugklrZW1CB2dSdaIluUHFswMm2RIKNqfsI-7ec--vn3QiHqYV68S1_qkktRlUrKBH1-gTAYHK1HZ_qgH30_oX_WZdE0UDfrsLM9Z_wcgid7QArQa7g6hatBr-EmGP6BTR9xTSN67Mf_S6qD2YFMnJZAr355oTiX-m7tbK0MGpEqkqutj3vZEOLsD54q4HUtBOd_AUtlmWk |
| CODEN | AJMAAN |
| CitedBy_id | crossref_primary_10_1016_j_geomphys_2015_07_001 crossref_primary_10_1007_s00220_013_1809_8 crossref_primary_10_1088_1751_8113_44_11_115402 crossref_primary_10_1007_JHEP02_2019_188 crossref_primary_10_1016_j_aim_2010_05_004 crossref_primary_10_1007_s12220_010_9149_9 crossref_primary_10_1007_JHEP11_2017_082 crossref_primary_10_1080_17476933_2013_805412 |
| ContentType | Journal Article |
| Copyright | Copyright 2009 The Johns Hopkins University Press Copyright © 2008 The Johns Hopkins University Press. 2015 INIST-CNRS Copyright Johns Hopkins University Press Oct 2009 |
| Copyright_xml | – notice: Copyright 2009 The Johns Hopkins University Press – notice: Copyright © 2008 The Johns Hopkins University Press. – notice: 2015 INIST-CNRS – notice: Copyright Johns Hopkins University Press Oct 2009 |
| DBID | AAYXX CITATION IQODW 7XB 8AF 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- L6V M2O M2P M7S MBDVC P5Z P62 PADUT PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0X |
| DOI | 10.1353/ajm.0.0071 |
| DatabaseName | CrossRef Pascal-Francis ProQuest Central (purchase pre-March 2016) STEM Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Research Library Science Database Engineering Database Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Research Library China ProQuest Databases ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic SIRS Editorial |
| DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SIRS Editorial ProQuest Computer Science Collection ProQuest AP Science SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Research Library China ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Research Library Prep CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1080-6377 |
| EndPage | 1417 |
| ExternalDocumentID | 1878042931 21990898 10_1353_ajm_0_0071 317336_S1080637709500068 40388553 |
| GroupedDBID | -~X 0R~ 23M 2AX 4.4 5GY 5VS 6J9 706 709 70B 8AF 8FE 8FG 8FW AAGGK AAHKB AAHKG AAMZP AAVNP AAWIL AAXGD AAYOK ABAWQ ABBHK ABECW ABEZY ABFAN ABJCF ABPFR ABPPZ ABPQH ABXSQ ABYWD ACDWB ACGFO ACGOD ACHIS ACHJO ACIWK ACMTB ACNCT ACTMH ACUBG ACYXD ADFRT ADHJG ADODI ADPSH ADTUW ADULT ADWTG AEHYH AENEX AERNI AEUPB AFKRA AFNCV AFVYC AFXHP AGLNM AIHAF AIHXW ALMA_UNASSIGNED_HOLDINGS ALRMG AMBIC AMVHM ANBFE AOQIW ARAPS AZQEC BENPR BGLVJ BKOMP BPHCQ CAG CCPQU COF CS3 D0L DQDLB DSRWC DWQXO EBS ECEWR EJD FEDTE FOMLG FVMVE GNUQQ GUQSH H13 HCIFZ HQ6 HVGLF H~9 IPSME JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K6V K7- L6V L7B LU7 M2O M2P M7S MBR MBU MSI MUA MUP MUS N9A O9- OK1 P-O P2P P62 PADUT PHGZM PHGZT PQQKQ PRG PROAC PTHSS RC9 ROL S0X SA0 TN5 VQG WH7 YF5 3V. 692 6OB AAFWJ AAYJJ ABCQX ABEFU ABTAH ABYAD ACMKW ACTWD ADACV AELPN AGHSJ AHJEN AI. AS~ BES BKUOZ F20 HGD IAO IEA IGS IOF ITC JSODD KQ8 MVM NHB RNS VH1 VOH YYP ZCG ZY4 AAYXX ABUFD AFFHD AFQQW CITATION PAQYV PQGLB IQODW 7XB JQ2 MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c355t-fbf5815fdfc49b664a9feacfe7d0d6a2f87e9aad8d5beef123ab0c6932acfc783 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000270438900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0002-9327 1080-6377 |
| IngestDate | Mon Nov 10 02:56:03 EST 2025 Mon Jul 21 09:13:16 EDT 2025 Sat Nov 29 03:37:16 EST 2025 Tue Nov 18 22:16:43 EST 2025 Thu Jul 04 04:49:31 EDT 2024 Thu Jul 03 21:13:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Spectral function Zero Determinant Functional equation Eigenvalue Scattering operator Mathematics Laplacian Kernel method Scattering theory Functional Kernels Trace Manifold Multiplicity Counting function Zeta function Generalized manifold Resonance Asymptotic approximation Curvature Quotient Pole |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c355t-fbf5815fdfc49b664a9feacfe7d0d6a2f87e9aad8d5beef123ab0c6932acfc783 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 236542766 |
| PQPubID | 41735 |
| PageCount | 59 |
| ParticipantIDs | proquest_journals_236542766 pascalfrancis_primary_21990898 crossref_primary_10_1353_ajm_0_0071 crossref_citationtrail_10_1353_ajm_0_0071 projectmuse_journals_317336_S1080637709500068 jstor_primary_40388553 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-10-01 |
| PublicationDateYYYYMMDD | 2009-10-01 |
| PublicationDate_xml | – month: 10 year: 2009 text: 2009-10-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Baltimore, MD |
| PublicationPlace_xml | – name: Baltimore, MD – name: Baltimore |
| PublicationTitle | American journal of mathematics |
| PublicationYear | 2009 |
| Publisher | Johns Hopkins University Press |
| Publisher_xml | – name: Johns Hopkins University Press |
| SSID | ssj0000702 |
| Score | 1.9279132 |
| Snippet | For a class of even dimensional asymptotically hyperbolic (AH) manifolds, we develop a generalized Birman-Krein theory to study scattering asymptotics and,... For a class of even dimensional asymptotically hyperbolic (AH) manifolds, we develop a generalized Birman-Krein theory to study scattering asymptotics and,... |
| SourceID | proquest pascalfrancis crossref projectmuse jstor |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1359 |
| SubjectTerms | Algebra Continuous spectra Coordinate systems Differential operators Dimensional analysis Dynamical systems Exact sciences and technology Fourier transformations General mathematics General, history and biography Infinity Laplacians Mathematical analysis Mathematical functions Mathematical manifolds Mathematical problems Mathematics Number theory Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Riemann manifold Sciences and techniques of general use Several complex variables and analytic spaces Theory Topological manifolds |
| Title | Generalized Krein Formula, Determinants, and Selberg Zeta Function in Even Dimension |
| URI | https://www.jstor.org/stable/40388553 https://muse.jhu.edu/article/317336 https://www.proquest.com/docview/236542766 |
| Volume | 131 |
| WOSCitedRecordID | wos000270438900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1080-6377 dateEnd: 20200831 omitProxy: false ssIdentifier: ssj0000702 issn: 0002-9327 databaseCode: K7- dateStart: 20050101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1080-6377 dateEnd: 20200831 omitProxy: false ssIdentifier: ssj0000702 issn: 0002-9327 databaseCode: M7S dateStart: 20050101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1080-6377 dateEnd: 20200831 omitProxy: false ssIdentifier: ssj0000702 issn: 0002-9327 databaseCode: P5Z dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1080-6377 dateEnd: 20200831 omitProxy: false ssIdentifier: ssj0000702 issn: 0002-9327 databaseCode: BENPR dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Research Library customDbUrl: eissn: 1080-6377 dateEnd: 20200831 omitProxy: false ssIdentifier: ssj0000702 issn: 0002-9327 databaseCode: M2O dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1080-6377 dateEnd: 20200831 omitProxy: false ssIdentifier: ssj0000702 issn: 0002-9327 databaseCode: M2P dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVoywEOfFdsCytLcEGqaRLHcXJCKeuFVRsT7Qeq9hLFji21gu1HFn4_4ySbsgJx4eJLJof4OTPP9tM8hN4ya3WgvIRYHTISJtonUAUVSWKlvcB6JuSt2QSXMj4_T_JOm1N3sspNTmwSdXWl3Rn5cUCdtRKPog_XN8SZRrnL1c5BYwftAbHxnaIrC_K7RMy9YMN-gabwrjspZfS4vPz-3mm6uL9Vj1pJotNHljVMkW29LbaPRf5I2k0lGj_-z294gh51FBSn7Zp5iu6Z1TP0MOv7t9bP0bxTtE2WYoRPp2IiMewWs8VZeoRHAhhwNpGpnM-OcCpHeCbOTsT0E16KeYrHC9noUjC8I74KiUeTTEiXsl-gxVjMP34mnf8C0cBC1sQqy2Kf2QpwTFQUhWViIU9bwyuvisrAxtwkZVnFFVPGWKiBpfJ0BFMNQZrHdB_trq5W5iXCxmhqFWzDvaBy1sCqjDgURlrpstKBrwbo3QaFQnfNyZ1HxreiuXFjtADECtfJlPsD9KaPvW5bcvw1ar8Bsw8JXd8bxugADbfQ7QMgd7tL0HiAyG9wF90_XRfAtCiNiplTZUaUcyCnrthD_OEG7bvgHuqDfz49RA-a66lGHfgK7a5vf5jX6L7-ub6ob4do70TIfDpEO6ecDN3i_tKMuRv5DMacLX8Bd1f7tw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELVKQQIOfFcshWIJOCA1NLGTODkgFIiXRruxqu4uqnoJsWNLINiWZgHxo_iPjPNVViBuPXDOJEri53nj-GUeQk8DYxSRbuwY5QeOHyvPARaUThxJ5RLjap-1ZhNMiOjoKD7YQD_7f2GsrLLPiU2irk6U_Ua-R6i1VmJh-Or0i2NNo-zmau-g0aJion98hxVb_TJLYXifETLm8zf7Tmcq4Cig1pVjpAkiLzAV3Fwsw9AvYwPJx2hWuVVYEhMxHZdlFVWB1NpAYi-lq0IocyBIsYjCdS-hy75tLGaVguTgPPEzl_TVNsSzrhsqDehe-fHzC6shY94a_7USSKvHLGsYEtN6aax_hvmDJBrmG9_8z97ZLXSjK7Fx0s6J22hDL--g6_nQn7a-i-adYi875imeHPJMYFgN54tpsotTDhV-nolEzGe7OBEpnvHpa374Fh_zeYLHC9HobjCcw99xgdMs58JS0j20uJDH2kKby5Olvo-w1ooayXzikspaH8syZED8tFJlpYgnR-h5P-qF6pqvWw-QT0WzoxjQAhBS2E6tzBuhJ0Psadty5K9RWw14hhDf9vUJAjpCO2toGgKAm-wmbzRCzm_wKrqcVRdQSVIaFjOrOg0pY1B822IG4rd7dJ0HD9B68M-jj9HV_Xk-LaaZmGyja81WXKOEfIg2V2df9SN0RX1bfajPdpqphNH7i8bhL-qFWXg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFLXGQAge-J5WBsMS8IC00MSO4-QBoUBciNpa1dpOU19C4tjSEHRjKSB-Gv-O63x0VCDe9sBzTqIkPr73Oj65B6FnzBhFCjdyjPKZ40fKcyALFk4UFsolxtU-b8wmuJTh8XE02UI_u39hrKyyi4l1oC5Plf1G3ifUWivxIOibVhUxSQavz7441kDKbrR2bhoNQ4b6x3dYvVWv0gSG-jkhAzF7-95pDQYcBWl25ZjCsNBjpoQbjYog8PPIQCAympduGeTEhFxHeV6GJSu0NhDk88JVAZQ8AFI8pHDdK-gqhyWmVRNO2OIiCXCXdJU34HnbGZUy2s8_fn5p9WTc28iFjRzSajPzCobHNL4am59k_kgYdRYc3P6P398ddKstvXHczJW7aEsv76Gb43Xf2uo-mrVKvnQhEjw8FKnEsEoez0fxAU4EVP7jVMZyNj3AsUzwVIzeiMN3eCFmMR7MZa3HwXCOOBISJ-lYSJuqHqD5pTzWDtpeni71LsJaK2oK7hOXlNYSucgDDgUBLVVeKuIVPfSiY0Cm2qbs1hvkU1bvNDKaAVsy28GVez30dI09a1qR_BW1UxNpDfFtvx_GaA_tbzBrDYCcZTd_wx5yfqNa1sayKoMKk9Igm1o1akA5h6LcFjmA3-uYdgFe0-zhP48-QdeBftkolcM9dKPeoasFko_Q9ur8q36Mrqlvq5PqfL-eVRh9uGwa_gJIumJk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Krein+formula%2C+determinants%2C+and+Selberg+zeta+function+in+even+dimension&rft.jtitle=American+journal+of+mathematics&rft.au=Guillarmou%2C+Colin&rft.date=2009-10-01&rft.pub=Johns+Hopkins+University+Press&rft.issn=0002-9327&rft.eissn=1080-6377&rft.volume=131&rft.issue=5&rft.spage=1359&rft.epage=1417&rft_id=info:doi/10.1353%2Fajm.0.0071&rft.externalDocID=317336_S1080637709500068 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9327&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9327&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9327&client=summon |