Generalized Krein Formula, Determinants, and Selberg Zeta Function in Even Dimension

For a class of even dimensional asymptotically hyperbolic (AH) manifolds, we develop a generalized Birman-Krein theory to study scattering asymptotics and, when the curvature is constant, to analyze the Selberg zeta function. The main objects we construct for an AH manifold (X, g) are, on the one ha...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:American journal of mathematics Ročník 131; číslo 5; s. 1359 - 1417
Hlavní autor: Guillarmou, Colin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Baltimore, MD Johns Hopkins University Press 01.10.2009
Témata:
ISSN:0002-9327, 1080-6377, 1080-6377
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:For a class of even dimensional asymptotically hyperbolic (AH) manifolds, we develop a generalized Birman-Krein theory to study scattering asymptotics and, when the curvature is constant, to analyze the Selberg zeta function. The main objects we construct for an AH manifold (X, g) are, on the one hand, a natural spectral function ξ for the Laplacian$\Delta _g $, which replaces the counting function of the eigenvalues in this infinite volume case, and on the other hand the determinant of the scattering operator$S_X (\lambda )$of$\Delta _g $on X. Both need to be defined through regularized functional: renormalized trace on the bulk X and regularized determinant on the conformai infinity ($(\partial {\bar X},[h_0 ])$). We show that det$S_X (\lambda )$is meromorphic in$\lambda \in \mathbb{C}$, with divisors given by resonance multiplicities and dimensions of kernels of GJMS conformal Laplacians ($(P_k )_{k \in \mathbb{N}} $of$(\partial {\bar X},[h_0 ])$)-Moreover ξ(z) is proved to be the phase of det$S_X (\frac{n} {2} + iz)$on the essential spectrum$\{ z \in \mathbb{R}^ + \} $. Applying this theory to convex co-compact quotients$X = \Gamma \backslash \mathbb{H}^{n + 1} $of hyperbolic space$\mathbb{H}^{n + 1} $, we obtain the functional equation$Z(\lambda )/Z(n - \lambda ) = (\det S_{\mathbb{H}^{n + 1} } (\lambda ))^{x(X)} /\det S_X (\lambda )$for Selberg zeta function$Z(\lambda )$of X, where X(X) is the Euler characteristic of X. This describes the poles and zeros of Z(λ), computes det$P_k $in term of$Z(\frac{n}{2} - k)/Z(\frac{n} {2} + k)$and implies a sharp Weyl asymptotic for ξ(z).
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0002-9327
1080-6377
1080-6377
DOI:10.1353/ajm.0.0071