A Short-Term Wind Power Forecast Method via XGBoost Hyper-Parameters Optimization

The improvement of wind power prediction accuracy is beneficial to the effective utilization of wind energy. An improved XGBoost algorithm via Bayesian hyperparameter optimization (BH-XGBoost method) was proposed in this article, which is employed to forecast the short-term wind power for wind farms...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Frontiers in energy research Ročník 10
Hlavní autori: Xiong, Xiong, Guo, Xiaojie, Zeng, Pingliang, Zou, Ruiling, Wang, Xiaolong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Frontiers Media S.A 10.05.2022
Predmet:
ISSN:2296-598X, 2296-598X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The improvement of wind power prediction accuracy is beneficial to the effective utilization of wind energy. An improved XGBoost algorithm via Bayesian hyperparameter optimization (BH-XGBoost method) was proposed in this article, which is employed to forecast the short-term wind power for wind farms. Compared to the XGBoost, SVM, KELM, and LSTM, the results indicate that BH-XGBoost outperforms other methods in all the cases. The BH-XGBoost method could yield a more minor estimated error than the other methods, especially in the cases of wind ramp events caused by extreme weather conditions and low wind speed range. The comparison results led to the recommendation that the BH-XGBoost method is an effective method to forecast the short-term wind power for wind farms.
ISSN:2296-598X
2296-598X
DOI:10.3389/fenrg.2022.905155