Reconfiguration of Spanning Trees with Degree Constraints or Diameter Constraints

We investigate the complexity of finding a transformation from a given spanning tree in a graph to another given spanning tree in the same graph via a sequence of edge flips. The exchange property of the matroid bases immediately yields that such a transformation always exists if we have no constrai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica Jg. 85; H. 9; S. 2779 - 2816
Hauptverfasser: Bousquet, Nicolas, Ito, Takehiro, Kobayashi, Yusuke, Mizuta, Haruka, Ouvrard, Paul, Suzuki, Akira, Wasa, Kunihiro
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.09.2023
Springer Nature B.V
Springer Verlag
Schlagworte:
ISSN:0178-4617, 1432-0541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the complexity of finding a transformation from a given spanning tree in a graph to another given spanning tree in the same graph via a sequence of edge flips. The exchange property of the matroid bases immediately yields that such a transformation always exists if we have no constraints on spanning trees. In this paper, we wish to find a transformation which passes through only spanning trees satisfying some constraint. Our focus is bounding either the maximum degree or the diameter of spanning trees, and we give the following results. The problem with a lower bound on maximum degree is solvable in polynomial time, while the problem with an upper bound on maximum degree is PSPACE-complete. The problem with a lower bound on diameter is NP-hard, while the problem with an upper bound on diameter is solvable in polynomial time.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-023-01117-z