Reconfiguration of Spanning Trees with Degree Constraints or Diameter Constraints

We investigate the complexity of finding a transformation from a given spanning tree in a graph to another given spanning tree in the same graph via a sequence of edge flips. The exchange property of the matroid bases immediately yields that such a transformation always exists if we have no constrai...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 85; číslo 9; s. 2779 - 2816
Hlavní autoři: Bousquet, Nicolas, Ito, Takehiro, Kobayashi, Yusuke, Mizuta, Haruka, Ouvrard, Paul, Suzuki, Akira, Wasa, Kunihiro
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.09.2023
Springer Nature B.V
Springer Verlag
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We investigate the complexity of finding a transformation from a given spanning tree in a graph to another given spanning tree in the same graph via a sequence of edge flips. The exchange property of the matroid bases immediately yields that such a transformation always exists if we have no constraints on spanning trees. In this paper, we wish to find a transformation which passes through only spanning trees satisfying some constraint. Our focus is bounding either the maximum degree or the diameter of spanning trees, and we give the following results. The problem with a lower bound on maximum degree is solvable in polynomial time, while the problem with an upper bound on maximum degree is PSPACE-complete. The problem with a lower bound on diameter is NP-hard, while the problem with an upper bound on diameter is solvable in polynomial time.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-023-01117-z