Neural Networks Enhanced Optimal Admittance Control of Robot-Environment Interaction Using Reinforcement Learning
In this paper, an adaptive admittance control scheme is developed for robots to interact with time-varying environments. Admittance control is adopted to achieve a compliant physical robot-environment interaction, and the uncertain environment with time-varying dynamics is defined as a linear system...
Uložené v:
| Vydané v: | IEEE transaction on neural networks and learning systems Ročník 33; číslo 9; s. 4551 - 4561 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, an adaptive admittance control scheme is developed for robots to interact with time-varying environments. Admittance control is adopted to achieve a compliant physical robot-environment interaction, and the uncertain environment with time-varying dynamics is defined as a linear system. A critic learning method is used to obtain the desired admittance parameters based on the cost function composed of interaction force and trajectory tracking without the knowledge of the environmental dynamics. To deal with dynamic uncertainties in the control system, a neural-network (NN)-based adaptive controller with a dynamic learning framework is developed to guarantee the trajectory tracking performance. Experiments are conducted and the results have verified the effectiveness of the proposed method. |
|---|---|
| AbstractList | In this paper, an adaptive admittance control scheme is developed for robots to interact with time-varying environments. Admittance control is adopted to achieve a compliant physical robot-environment interaction, and the uncertain environment with time-varying dynamics is defined as a linear system. A critic learning method is used to obtain the desired admittance parameters based on the cost function composed of interaction force and trajectory tracking without the knowledge of the environmental dynamics. To deal with dynamic uncertainties in the control system, a neural-network (NN)-based adaptive controller with a dynamic learning framework is developed to guarantee the trajectory tracking performance. Experiments are conducted and the results have verified the effectiveness of the proposed method. In this paper, an adaptive admittance control scheme is developed for robots to interact with time-varying environments. Admittance control is adopted to achieve a compliant physical robot-environment interaction, and the uncertain environment with time-varying dynamics is defined as a linear system. A critic learning method is used to obtain the desired admittance parameters based on the cost function composed of interaction force and trajectory tracking without the knowledge of the environmental dynamics. To deal with dynamic uncertainties in the control system, a neural-network (NN)-based adaptive controller with a dynamic learning framework is developed to guarantee the trajectory tracking performance. Experiments are conducted and the results have verified the effectiveness of the proposed method.In this paper, an adaptive admittance control scheme is developed for robots to interact with time-varying environments. Admittance control is adopted to achieve a compliant physical robot-environment interaction, and the uncertain environment with time-varying dynamics is defined as a linear system. A critic learning method is used to obtain the desired admittance parameters based on the cost function composed of interaction force and trajectory tracking without the knowledge of the environmental dynamics. To deal with dynamic uncertainties in the control system, a neural-network (NN)-based adaptive controller with a dynamic learning framework is developed to guarantee the trajectory tracking performance. Experiments are conducted and the results have verified the effectiveness of the proposed method. |
| Author | Chen, C. L. Philip Peng, Guangzhu Yang, Chenguang |
| Author_xml | – sequence: 1 givenname: Guangzhu orcidid: 0000-0003-3950-0451 surname: Peng fullname: Peng, Guangzhu email: gz.peng@qq.com organization: Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macau, China – sequence: 2 givenname: C. L. Philip orcidid: 0000-0001-5451-7230 surname: Chen fullname: Chen, C. L. Philip email: philip.chen@ieee.org organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 3 givenname: Chenguang orcidid: 0000-0001-5255-5559 surname: Yang fullname: Yang, Chenguang email: cyang@ieee.org organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33651696$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9v1DAQxS1UREvpFwAJWeLCJYv_xI59rFYLVFptpdJK3KzEmYBLYm9tB9RvX29320MP-GJr5vdG4_feoiMfPCD0npIFpUR_ud5s1j8WjDC64EQ0WqhX6IRRySrGlTp6fjc_j9FZSrekHEmErPUbdMy5FFRqeYLuNjDHdsQbyP9C_JPwyv9uvYUeX26zm0rnvJ9czrsaXgafYxhxGPBV6EKuVv6vi8FP4DO-8Blia7MLHt8k53_hK3B-CNHCY38NbfSl_A69HtoxwdnhPkU3X1fXy-_V-vLbxfJ8XVkuaK607sDyjgDp-_KjtqO6ByHoUEvb1Qo4VYw2lFjR9PUgQPW6E6qjg4KaUAL8FH3ez93GcDdDymZyycI4th7CnAyrtWSCcckK-ukFehvm6Mt2hjVEyZrVTBXq44Gauwl6s43Fn3hvnswsgNoDNoaUIgzGutzuDMmxdaOhxOyiM4_RmV105hBdkbIX0qfp_xV92IscADwLNJcNIYI_AOYtpQ8 |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_3390_math13132204 crossref_primary_10_3390_s22072523 crossref_primary_10_1007_s41315_024_00362_x crossref_primary_10_1155_2022_4332766 crossref_primary_10_1109_TMECH_2022_3221931 crossref_primary_10_1177_01423312231203270 crossref_primary_10_1002_rnc_6493 crossref_primary_10_1016_j_isatra_2024_08_013 crossref_primary_10_1016_j_neunet_2024_106810 crossref_primary_10_1109_TFUZZ_2023_3247693 crossref_primary_10_1109_ACCESS_2023_3347416 crossref_primary_10_1155_2021_4281006 crossref_primary_10_1109_LRA_2022_3147245 crossref_primary_10_1007_s12555_023_0358_y crossref_primary_10_1109_TNNLS_2021_3131261 crossref_primary_10_1007_s12555_021_0430_4 crossref_primary_10_1016_j_eswa_2024_125354 crossref_primary_10_1109_TSMC_2025_3577296 crossref_primary_10_1108_IR_04_2024_0176 crossref_primary_10_1109_TCSII_2021_3128958 crossref_primary_10_1007_s12555_024_0165_0 crossref_primary_10_1016_j_isatra_2023_02_021 crossref_primary_10_1109_TCSI_2023_3327254 crossref_primary_10_1109_TIM_2024_3379048 crossref_primary_10_1109_TNNLS_2022_3165941 crossref_primary_10_3390_act14070323 crossref_primary_10_1007_s11227_025_07270_2 crossref_primary_10_1016_j_neucom_2021_06_089 crossref_primary_10_1007_s11431_022_2205_9 crossref_primary_10_3390_machines13030207 crossref_primary_10_1177_01423312241286322 crossref_primary_10_1109_TASE_2022_3142565 crossref_primary_10_3389_fnbot_2022_1068706 crossref_primary_10_1109_TSMC_2024_3430265 crossref_primary_10_3390_act13090354 crossref_primary_10_1007_s40789_022_00510_3 crossref_primary_10_1108_IR_01_2025_0033 crossref_primary_10_3390_en16041677 crossref_primary_10_1186_s10033_024_01113_6 crossref_primary_10_1007_s41315_025_00494_8 crossref_primary_10_1016_j_ast_2022_108060 crossref_primary_10_1016_j_engappai_2025_110678 |
| Cites_doi | 10.1142/S0218127409023640 10.1109/TNNLS.2018.2806347 10.1109/TCYB.2018.2808321 10.1109/3477.485879 10.1109/TCYB.2017.2726039 10.7551/mitpress/4939.003.0007 10.1109/TNN.2005.860843 10.1109/JAS.2020.1003417 10.1109/MCS.2012.2214134 10.1109/TSMC.1981.4308708 10.1109/TNNLS.2018.2852711 10.1109/TSMCB.2008.924139 10.1109/TNNLS.2018.2876352 10.1177/0278364905056347 10.1109/TIE.2019.2893847 10.1109/TNNLS.2014.2378812 10.1080/00207179.2013.827799 10.1109/CDC.1984.272176 10.1109/TFUZZ.2015.2396075 10.1109/TMECH.2020.2987963 10.1016/j.neunet.2009.06.021 10.1016/0005-1098(96)85559-2 10.1109/TRO.2011.2158251 10.1007/978-1-4020-6272-8_6 10.1109/TCST.2013.2286194 10.1109/TSMCB.2009.2026289 10.1177/0278364911402527 10.1109/TIE.2019.2912781 10.1109/TRO.2016.2597322 10.1109/TIE.2019.2950853 10.1109/TII.2016.2612646 10.1109/CMPSAC.1979.762539 10.1016/s0094-114x(02)00045-9 10.1109/TSMC.2015.2429555 10.1115/1.3140702 10.1109/TNNLS.2018.2828813 10.1109/TNNLS.2018.2866622 10.1007/978-981-10-0830-6 10.1049/iet-cta:20070096 10.1109/56.804 10.1080/00207179.2011.642309 10.1109/TNNLS.2018.2886023 10.1109/MCAS.2009.933854 10.1109/TCST.2016.2523901 10.1109/TCYB.2014.2329931 10.1109/TCYB.2016.2573837 10.1109/ROBOT.1994.351417 10.1109/TNN.2010.2076370 10.1109/TNNLS.2017.2665581 10.1109/TNNLS.2017.2716952 10.1109/TMECH.2014.2375638 10.1109/TIE.2019.2947844 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2021.3057958 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 4561 |
| ExternalDocumentID | 33651696 10_1109_TNNLS_2021_3057958 9367005 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2019YFB1703600 funderid: 10.13039/501100012166 – fundername: Science and Technology Development Fund, Macau grantid: 0119/2018/A3 – fundername: Multiyear Research Grants of University of Macau – fundername: National Natural Science Foundation of China grantid: 61702195; 61751202; U1813203; U1801262; 61751205; U20A20200; 61861136009 funderid: 10.13039/501100001809 – fundername: Science and Technology Major Project of Guangzhou grantid: 202007030006 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-99bec3b0e0dd238ab19de551f46cb48e31821710c57d4f5e8d9b58b1f8e4010e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 64 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732268100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Wed Oct 01 13:52:49 EDT 2025 Sun Jun 29 15:37:49 EDT 2025 Thu Jan 02 22:56:27 EST 2025 Sat Nov 29 01:40:11 EST 2025 Tue Nov 18 21:45:11 EST 2025 Wed Aug 27 02:29:21 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-99bec3b0e0dd238ab19de551f46cb48e31821710c57d4f5e8d9b58b1f8e4010e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3950-0451 0000-0001-5451-7230 0000-0001-5255-5559 |
| PMID | 33651696 |
| PQID | 2708642428 |
| PQPubID | 85436 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_TNNLS_2021_3057958 proquest_miscellaneous_2496252362 ieee_primary_9367005 proquest_journals_2708642428 crossref_primary_10_1109_TNNLS_2021_3057958 pubmed_primary_33651696 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref12 ref56 ref15 ref14 ref53 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Lee (ref46) 1998; 19 ref51 ref50 ref45 ref48 ref42 ref41 ref44 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Bertsekas (ref13) 2011; 2 ref35 ref34 ref37 ref36 ref31 Landelius (ref47) 1997 ref30 ref33 ref32 Åström (ref49) 2013 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 Slotine (ref52) 1987; 2 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref43 doi: 10.1142/S0218127409023640 – ident: ref15 doi: 10.1109/TNNLS.2018.2806347 – ident: ref35 doi: 10.1109/TCYB.2018.2808321 – ident: ref23 doi: 10.1109/3477.485879 – ident: ref28 doi: 10.1109/TCYB.2017.2726039 – ident: ref12 doi: 10.7551/mitpress/4939.003.0007 – ident: ref42 doi: 10.1109/TNN.2005.860843 – ident: ref29 doi: 10.1109/JAS.2020.1003417 – ident: ref19 doi: 10.1109/MCS.2012.2214134 – ident: ref4 doi: 10.1109/TSMC.1981.4308708 – ident: ref31 doi: 10.1109/TNNLS.2018.2852711 – volume-title: Adaptive Control year: 2013 ident: ref49 – ident: ref17 doi: 10.1109/TSMCB.2008.924139 – ident: ref32 doi: 10.1109/TNNLS.2018.2876352 – ident: ref11 doi: 10.1177/0278364905056347 – ident: ref26 doi: 10.1109/TIE.2019.2893847 – ident: ref48 doi: 10.1109/TNNLS.2014.2378812 – ident: ref24 doi: 10.1080/00207179.2013.827799 – ident: ref22 doi: 10.1109/CDC.1984.272176 – ident: ref30 doi: 10.1109/TFUZZ.2015.2396075 – ident: ref27 doi: 10.1109/TMECH.2020.2987963 – volume: 2 volume-title: Dynamic Programming and Optimal Control year: 2011 ident: ref13 – ident: ref16 doi: 10.1016/j.neunet.2009.06.021 – ident: ref51 doi: 10.1016/0005-1098(96)85559-2 – ident: ref9 doi: 10.1109/TRO.2011.2158251 – ident: ref25 doi: 10.1007/978-1-4020-6272-8_6 – ident: ref8 doi: 10.1109/TCST.2013.2286194 – ident: ref20 doi: 10.1109/TSMCB.2009.2026289 – ident: ref21 doi: 10.1177/0278364911402527 – ident: ref33 doi: 10.1109/TIE.2019.2912781 – ident: ref7 doi: 10.1109/TRO.2016.2597322 – ident: ref44 doi: 10.1109/TIE.2019.2950853 – volume: 19 volume-title: Adaptive Neural Network Control of Robotic Manipulators year: 1998 ident: ref46 – ident: ref36 doi: 10.1109/TII.2016.2612646 – ident: ref2 doi: 10.1109/CMPSAC.1979.762539 – ident: ref45 doi: 10.1016/s0094-114x(02)00045-9 – ident: ref57 doi: 10.1109/TSMC.2015.2429555 – ident: ref3 doi: 10.1115/1.3140702 – ident: ref55 doi: 10.1109/TNNLS.2018.2828813 – year: 1997 ident: ref47 article-title: Reinforcement learning and distributed local model synthesis – ident: ref40 doi: 10.1109/TNNLS.2018.2866622 – ident: ref54 doi: 10.1007/978-981-10-0830-6 – ident: ref50 doi: 10.1049/iet-cta:20070096 – ident: ref53 doi: 10.1109/56.804 – ident: ref6 doi: 10.1080/00207179.2011.642309 – ident: ref34 doi: 10.1109/TNNLS.2018.2886023 – ident: ref18 doi: 10.1109/MCAS.2009.933854 – ident: ref5 doi: 10.1109/TCST.2016.2523901 – ident: ref38 doi: 10.1109/TCYB.2014.2329931 – volume: 2 start-page: 86 issue: 2 year: 1987 ident: ref52 article-title: A rule-based inverse kinematics algorithm for redundant manipulators publication-title: Int. J. Robot. Autom. – ident: ref56 doi: 10.1109/TCYB.2016.2573837 – ident: ref10 doi: 10.1109/ROBOT.1994.351417 – ident: ref14 doi: 10.1109/TNN.2010.2076370 – ident: ref37 doi: 10.1109/TNNLS.2017.2665581 – ident: ref39 doi: 10.1109/TNNLS.2017.2716952 – ident: ref1 doi: 10.1109/TMECH.2014.2375638 – ident: ref41 doi: 10.1109/TIE.2019.2947844 |
| SSID | ssj0000605649 |
| Score | 2.596947 |
| Snippet | In this paper, an adaptive admittance control scheme is developed for robots to interact with time-varying environments. Admittance control is adopted to... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4551 |
| SubjectTerms | Adaptive control Admittance admittance control Artificial neural networks Control systems Cost function Electrical impedance Impedance Learning Learning systems Manipulators Neural networks neural networks (NNs) reinforcement learning (RL) Robot control robot–environment interaction Tracking Trajectory Uncertainty |
| Title | Neural Networks Enhanced Optimal Admittance Control of Robot-Environment Interaction Using Reinforcement Learning |
| URI | https://ieeexplore.ieee.org/document/9367005 https://www.ncbi.nlm.nih.gov/pubmed/33651696 https://www.proquest.com/docview/2708642428 https://www.proquest.com/docview/2496252362 |
| Volume | 33 |
| WOSCitedRecordID | wos000732268100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEL customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-UwFD6ouJiNzxm9vsjA7DTaJm2aLEWuuJAqjiN3V9okVUFb9fb6-z1JHyI4grvSniSF7yTnkfMA-MOKWBjUvKlkKqKRFJIWCDS1THBjFZfCB4_fnCdpKicTdTkHB0MujLXWB5_ZQ_fo7_JNrWfOVXakXLUxV7B0PklEm6s1-FMC1MuF13ZZKBhlPJn0OTKBOrpO0_O_aA2y8JC79MvY9enjXLhbIvFBJPkeK_9XN73YOV3-3g-vwFKnXpLjlh9WYc5Wa7Dct24g3U5eh2dXlAMJ0zYKfErG1Z2PBSAXeIY8uinM433TuHfkpA1nJ3VJruqibuj4PTuOeJdimx1BfPwBubK-Gqv2jkfSFXC9_Qn_TsfXJ2e0675ANY_DhiqF8PIisIExKNdzhNBY1K_KSOgiks53iuZMGOg4MVEZW2lUEcsiLKVFmy2w_BcsVHVlN4GYoGS5ZFonOZ4RhZKclygH81wpXCLhIwh7ADLdlSZ3HTIeMm-iBCrz-GUOv6zDbwT7w5intjDHl9TrDp2BsgNmBDs9zlm3d6cZS9DMi1B1wVG_h8-469xVSl7ZeoY0kULDkaH0H8FGyx_D3D1bbX2-5jb8YC6Fwsep7cBC8zKzu7CoX5v76csesvZE7nnWfgPpWPKP |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBQkuFCiULS0YiRu4dWzHsY-o2qqIJaCyoL1Fie1AJZrQbpbfz9h5oEqAxC1Kxnakb-x5eB4AL3mVKoeaN9XcSCq10rRCoKnnSjhvhFYxePzLIstzvVqZj1vwesqF8d7H4DN_FB7jXb5r7Sa4yo5NqDYWCpbeSqXkrM_WmjwqDDVzFfVdnihOuchWY5YMM8fLPF98QnuQJ0ciJGCmoVOfECrcE6kbQil2Wfm7whkFz-nO__3yfbg3KJjkTc8RD2DLNw9hZ2zeQIa9vAtXoSwHEuZ9HPiazJtvMRqAfMBT5DJM4S4vui68Iyd9QDtpa3LeVm1H57_z40h0Kvb5ESRGIJBzH-ux2uh6JEMJ16-P4PPpfHlyRof-C9SKNOmoMQiwqJhnzqFkLxFE51HDqqWyldTBe4oGTcJsmjlZp147U6W6Smrt0WpjXjyG7aZt_BMgjtW81NzarMRTojJaiBolYVkag0tkYgbJCEBhh-LkoUfG9yIaKcwUEb8i4FcM-M3g1TTmR1-a45_UuwGdiXIAZgYHI87FsHvXBc_Q0JOovOCoF9Nn3HfhMqVsfLtBGmnQdOQo_2ew1_PHNPfIVvt_XvM53Dlbvl8Ui7f5u6dwl4eEihi1dgDb3fXGH8Jt-7O7WF8_iwz-C_Fj9O4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Networks+Enhanced+Optimal+Admittance+Control+of+Robot-Environment+Interaction+Using+Reinforcement+Learning&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Peng%2C+Guangzhu&rft.au=Chen%2C+C.+L.+Philip&rft.au=Yang%2C+Chenguang&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=33&rft.issue=9&rft.spage=4551&rft.epage=4561&rft_id=info:doi/10.1109%2FTNNLS.2021.3057958&rft_id=info%3Apmid%2F33651696&rft.externalDocID=9367005 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |