Neural Networks Enhanced Optimal Admittance Control of Robot-Environment Interaction Using Reinforcement Learning

In this paper, an adaptive admittance control scheme is developed for robots to interact with time-varying environments. Admittance control is adopted to achieve a compliant physical robot-environment interaction, and the uncertain environment with time-varying dynamics is defined as a linear system...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 33; no. 9; pp. 4551 - 4561
Main Authors: Peng, Guangzhu, Chen, C. L. Philip, Yang, Chenguang
Format: Journal Article
Language:English
Published: United States IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, an adaptive admittance control scheme is developed for robots to interact with time-varying environments. Admittance control is adopted to achieve a compliant physical robot-environment interaction, and the uncertain environment with time-varying dynamics is defined as a linear system. A critic learning method is used to obtain the desired admittance parameters based on the cost function composed of interaction force and trajectory tracking without the knowledge of the environmental dynamics. To deal with dynamic uncertainties in the control system, a neural-network (NN)-based adaptive controller with a dynamic learning framework is developed to guarantee the trajectory tracking performance. Experiments are conducted and the results have verified the effectiveness of the proposed method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2021.3057958