Neural Networks Enhanced Optimal Admittance Control of Robot-Environment Interaction Using Reinforcement Learning

In this paper, an adaptive admittance control scheme is developed for robots to interact with time-varying environments. Admittance control is adopted to achieve a compliant physical robot-environment interaction, and the uncertain environment with time-varying dynamics is defined as a linear system...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 33; no. 9; pp. 4551 - 4561
Main Authors: Peng, Guangzhu, Chen, C. L. Philip, Yang, Chenguang
Format: Journal Article
Language:English
Published: United States IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, an adaptive admittance control scheme is developed for robots to interact with time-varying environments. Admittance control is adopted to achieve a compliant physical robot-environment interaction, and the uncertain environment with time-varying dynamics is defined as a linear system. A critic learning method is used to obtain the desired admittance parameters based on the cost function composed of interaction force and trajectory tracking without the knowledge of the environmental dynamics. To deal with dynamic uncertainties in the control system, a neural-network (NN)-based adaptive controller with a dynamic learning framework is developed to guarantee the trajectory tracking performance. Experiments are conducted and the results have verified the effectiveness of the proposed method.
AbstractList In this paper, an adaptive admittance control scheme is developed for robots to interact with time-varying environments. Admittance control is adopted to achieve a compliant physical robot-environment interaction, and the uncertain environment with time-varying dynamics is defined as a linear system. A critic learning method is used to obtain the desired admittance parameters based on the cost function composed of interaction force and trajectory tracking without the knowledge of the environmental dynamics. To deal with dynamic uncertainties in the control system, a neural-network (NN)-based adaptive controller with a dynamic learning framework is developed to guarantee the trajectory tracking performance. Experiments are conducted and the results have verified the effectiveness of the proposed method.
In this paper, an adaptive admittance control scheme is developed for robots to interact with time-varying environments. Admittance control is adopted to achieve a compliant physical robot-environment interaction, and the uncertain environment with time-varying dynamics is defined as a linear system. A critic learning method is used to obtain the desired admittance parameters based on the cost function composed of interaction force and trajectory tracking without the knowledge of the environmental dynamics. To deal with dynamic uncertainties in the control system, a neural-network (NN)-based adaptive controller with a dynamic learning framework is developed to guarantee the trajectory tracking performance. Experiments are conducted and the results have verified the effectiveness of the proposed method.In this paper, an adaptive admittance control scheme is developed for robots to interact with time-varying environments. Admittance control is adopted to achieve a compliant physical robot-environment interaction, and the uncertain environment with time-varying dynamics is defined as a linear system. A critic learning method is used to obtain the desired admittance parameters based on the cost function composed of interaction force and trajectory tracking without the knowledge of the environmental dynamics. To deal with dynamic uncertainties in the control system, a neural-network (NN)-based adaptive controller with a dynamic learning framework is developed to guarantee the trajectory tracking performance. Experiments are conducted and the results have verified the effectiveness of the proposed method.
Author Chen, C. L. Philip
Peng, Guangzhu
Yang, Chenguang
Author_xml – sequence: 1
  givenname: Guangzhu
  orcidid: 0000-0003-3950-0451
  surname: Peng
  fullname: Peng, Guangzhu
  email: gz.peng@qq.com
  organization: Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macau, China
– sequence: 2
  givenname: C. L. Philip
  orcidid: 0000-0001-5451-7230
  surname: Chen
  fullname: Chen, C. L. Philip
  email: philip.chen@ieee.org
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: Chenguang
  orcidid: 0000-0001-5255-5559
  surname: Yang
  fullname: Yang, Chenguang
  email: cyang@ieee.org
  organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33651696$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1UREvpFwAJWeLCJYv_xI59rFYLVFptpdJK3KzEmYBLYm9tB9RvX29320MP-GJr5vdG4_feoiMfPCD0npIFpUR_ud5s1j8WjDC64EQ0WqhX6IRRySrGlTp6fjc_j9FZSrekHEmErPUbdMy5FFRqeYLuNjDHdsQbyP9C_JPwyv9uvYUeX26zm0rnvJ9czrsaXgafYxhxGPBV6EKuVv6vi8FP4DO-8Blia7MLHt8k53_hK3B-CNHCY38NbfSl_A69HtoxwdnhPkU3X1fXy-_V-vLbxfJ8XVkuaK607sDyjgDp-_KjtqO6ByHoUEvb1Qo4VYw2lFjR9PUgQPW6E6qjg4KaUAL8FH3ez93GcDdDymZyycI4th7CnAyrtWSCcckK-ukFehvm6Mt2hjVEyZrVTBXq44Gauwl6s43Fn3hvnswsgNoDNoaUIgzGutzuDMmxdaOhxOyiM4_RmV105hBdkbIX0qfp_xV92IscADwLNJcNIYI_AOYtpQ8
CODEN ITNNAL
CitedBy_id crossref_primary_10_3390_math13132204
crossref_primary_10_3390_s22072523
crossref_primary_10_1007_s41315_024_00362_x
crossref_primary_10_1155_2022_4332766
crossref_primary_10_1109_TMECH_2022_3221931
crossref_primary_10_1177_01423312231203270
crossref_primary_10_1002_rnc_6493
crossref_primary_10_1016_j_isatra_2024_08_013
crossref_primary_10_1016_j_neunet_2024_106810
crossref_primary_10_1109_TFUZZ_2023_3247693
crossref_primary_10_1109_ACCESS_2023_3347416
crossref_primary_10_1155_2021_4281006
crossref_primary_10_1109_LRA_2022_3147245
crossref_primary_10_1007_s12555_023_0358_y
crossref_primary_10_1109_TNNLS_2021_3131261
crossref_primary_10_1007_s12555_021_0430_4
crossref_primary_10_1016_j_eswa_2024_125354
crossref_primary_10_1109_TSMC_2025_3577296
crossref_primary_10_1108_IR_04_2024_0176
crossref_primary_10_1109_TCSII_2021_3128958
crossref_primary_10_1007_s12555_024_0165_0
crossref_primary_10_1016_j_isatra_2023_02_021
crossref_primary_10_1109_TCSI_2023_3327254
crossref_primary_10_1109_TIM_2024_3379048
crossref_primary_10_1109_TNNLS_2022_3165941
crossref_primary_10_3390_act14070323
crossref_primary_10_1007_s11227_025_07270_2
crossref_primary_10_1016_j_neucom_2021_06_089
crossref_primary_10_1007_s11431_022_2205_9
crossref_primary_10_3390_machines13030207
crossref_primary_10_1177_01423312241286322
crossref_primary_10_1109_TASE_2022_3142565
crossref_primary_10_3389_fnbot_2022_1068706
crossref_primary_10_1109_TSMC_2024_3430265
crossref_primary_10_3390_act13090354
crossref_primary_10_1007_s40789_022_00510_3
crossref_primary_10_1108_IR_01_2025_0033
crossref_primary_10_3390_en16041677
crossref_primary_10_1186_s10033_024_01113_6
crossref_primary_10_1007_s41315_025_00494_8
crossref_primary_10_1016_j_ast_2022_108060
crossref_primary_10_1016_j_engappai_2025_110678
Cites_doi 10.1142/S0218127409023640
10.1109/TNNLS.2018.2806347
10.1109/TCYB.2018.2808321
10.1109/3477.485879
10.1109/TCYB.2017.2726039
10.7551/mitpress/4939.003.0007
10.1109/TNN.2005.860843
10.1109/JAS.2020.1003417
10.1109/MCS.2012.2214134
10.1109/TSMC.1981.4308708
10.1109/TNNLS.2018.2852711
10.1109/TSMCB.2008.924139
10.1109/TNNLS.2018.2876352
10.1177/0278364905056347
10.1109/TIE.2019.2893847
10.1109/TNNLS.2014.2378812
10.1080/00207179.2013.827799
10.1109/CDC.1984.272176
10.1109/TFUZZ.2015.2396075
10.1109/TMECH.2020.2987963
10.1016/j.neunet.2009.06.021
10.1016/0005-1098(96)85559-2
10.1109/TRO.2011.2158251
10.1007/978-1-4020-6272-8_6
10.1109/TCST.2013.2286194
10.1109/TSMCB.2009.2026289
10.1177/0278364911402527
10.1109/TIE.2019.2912781
10.1109/TRO.2016.2597322
10.1109/TIE.2019.2950853
10.1109/TII.2016.2612646
10.1109/CMPSAC.1979.762539
10.1016/s0094-114x(02)00045-9
10.1109/TSMC.2015.2429555
10.1115/1.3140702
10.1109/TNNLS.2018.2828813
10.1109/TNNLS.2018.2866622
10.1007/978-981-10-0830-6
10.1049/iet-cta:20070096
10.1109/56.804
10.1080/00207179.2011.642309
10.1109/TNNLS.2018.2886023
10.1109/MCAS.2009.933854
10.1109/TCST.2016.2523901
10.1109/TCYB.2014.2329931
10.1109/TCYB.2016.2573837
10.1109/ROBOT.1994.351417
10.1109/TNN.2010.2076370
10.1109/TNNLS.2017.2665581
10.1109/TNNLS.2017.2716952
10.1109/TMECH.2014.2375638
10.1109/TIE.2019.2947844
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3057958
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 4561
ExternalDocumentID 33651696
10_1109_TNNLS_2021_3057958
9367005
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2019YFB1703600
  funderid: 10.13039/501100012166
– fundername: Science and Technology Development Fund, Macau
  grantid: 0119/2018/A3
– fundername: Multiyear Research Grants of University of Macau
– fundername: National Natural Science Foundation of China
  grantid: 61702195; 61751202; U1813203; U1801262; 61751205; U20A20200; 61861136009
  funderid: 10.13039/501100001809
– fundername: Science and Technology Major Project of Guangzhou
  grantid: 202007030006
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-99bec3b0e0dd238ab19de551f46cb48e31821710c57d4f5e8d9b58b1f8e4010e3
IEDL.DBID RIE
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732268100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Wed Oct 01 13:52:49 EDT 2025
Sun Jun 29 15:37:49 EDT 2025
Thu Jan 02 22:56:27 EST 2025
Sat Nov 29 01:40:11 EST 2025
Tue Nov 18 21:45:11 EST 2025
Wed Aug 27 02:29:21 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-99bec3b0e0dd238ab19de551f46cb48e31821710c57d4f5e8d9b58b1f8e4010e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3950-0451
0000-0001-5451-7230
0000-0001-5255-5559
PMID 33651696
PQID 2708642428
PQPubID 85436
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TNNLS_2021_3057958
proquest_miscellaneous_2496252362
ieee_primary_9367005
proquest_journals_2708642428
crossref_primary_10_1109_TNNLS_2021_3057958
pubmed_primary_33651696
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref12
ref56
ref15
ref14
ref53
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Lee (ref46) 1998; 19
ref51
ref50
ref45
ref48
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Bertsekas (ref13) 2011; 2
ref35
ref34
ref37
ref36
ref31
Landelius (ref47) 1997
ref30
ref33
ref32
Åström (ref49) 2013
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
Slotine (ref52) 1987; 2
ref21
ref28
ref27
ref29
References_xml – ident: ref43
  doi: 10.1142/S0218127409023640
– ident: ref15
  doi: 10.1109/TNNLS.2018.2806347
– ident: ref35
  doi: 10.1109/TCYB.2018.2808321
– ident: ref23
  doi: 10.1109/3477.485879
– ident: ref28
  doi: 10.1109/TCYB.2017.2726039
– ident: ref12
  doi: 10.7551/mitpress/4939.003.0007
– ident: ref42
  doi: 10.1109/TNN.2005.860843
– ident: ref29
  doi: 10.1109/JAS.2020.1003417
– ident: ref19
  doi: 10.1109/MCS.2012.2214134
– ident: ref4
  doi: 10.1109/TSMC.1981.4308708
– ident: ref31
  doi: 10.1109/TNNLS.2018.2852711
– volume-title: Adaptive Control
  year: 2013
  ident: ref49
– ident: ref17
  doi: 10.1109/TSMCB.2008.924139
– ident: ref32
  doi: 10.1109/TNNLS.2018.2876352
– ident: ref11
  doi: 10.1177/0278364905056347
– ident: ref26
  doi: 10.1109/TIE.2019.2893847
– ident: ref48
  doi: 10.1109/TNNLS.2014.2378812
– ident: ref24
  doi: 10.1080/00207179.2013.827799
– ident: ref22
  doi: 10.1109/CDC.1984.272176
– ident: ref30
  doi: 10.1109/TFUZZ.2015.2396075
– ident: ref27
  doi: 10.1109/TMECH.2020.2987963
– volume: 2
  volume-title: Dynamic Programming and Optimal Control
  year: 2011
  ident: ref13
– ident: ref16
  doi: 10.1016/j.neunet.2009.06.021
– ident: ref51
  doi: 10.1016/0005-1098(96)85559-2
– ident: ref9
  doi: 10.1109/TRO.2011.2158251
– ident: ref25
  doi: 10.1007/978-1-4020-6272-8_6
– ident: ref8
  doi: 10.1109/TCST.2013.2286194
– ident: ref20
  doi: 10.1109/TSMCB.2009.2026289
– ident: ref21
  doi: 10.1177/0278364911402527
– ident: ref33
  doi: 10.1109/TIE.2019.2912781
– ident: ref7
  doi: 10.1109/TRO.2016.2597322
– ident: ref44
  doi: 10.1109/TIE.2019.2950853
– volume: 19
  volume-title: Adaptive Neural Network Control of Robotic Manipulators
  year: 1998
  ident: ref46
– ident: ref36
  doi: 10.1109/TII.2016.2612646
– ident: ref2
  doi: 10.1109/CMPSAC.1979.762539
– ident: ref45
  doi: 10.1016/s0094-114x(02)00045-9
– ident: ref57
  doi: 10.1109/TSMC.2015.2429555
– ident: ref3
  doi: 10.1115/1.3140702
– ident: ref55
  doi: 10.1109/TNNLS.2018.2828813
– year: 1997
  ident: ref47
  article-title: Reinforcement learning and distributed local model synthesis
– ident: ref40
  doi: 10.1109/TNNLS.2018.2866622
– ident: ref54
  doi: 10.1007/978-981-10-0830-6
– ident: ref50
  doi: 10.1049/iet-cta:20070096
– ident: ref53
  doi: 10.1109/56.804
– ident: ref6
  doi: 10.1080/00207179.2011.642309
– ident: ref34
  doi: 10.1109/TNNLS.2018.2886023
– ident: ref18
  doi: 10.1109/MCAS.2009.933854
– ident: ref5
  doi: 10.1109/TCST.2016.2523901
– ident: ref38
  doi: 10.1109/TCYB.2014.2329931
– volume: 2
  start-page: 86
  issue: 2
  year: 1987
  ident: ref52
  article-title: A rule-based inverse kinematics algorithm for redundant manipulators
  publication-title: Int. J. Robot. Autom.
– ident: ref56
  doi: 10.1109/TCYB.2016.2573837
– ident: ref10
  doi: 10.1109/ROBOT.1994.351417
– ident: ref14
  doi: 10.1109/TNN.2010.2076370
– ident: ref37
  doi: 10.1109/TNNLS.2017.2665581
– ident: ref39
  doi: 10.1109/TNNLS.2017.2716952
– ident: ref1
  doi: 10.1109/TMECH.2014.2375638
– ident: ref41
  doi: 10.1109/TIE.2019.2947844
SSID ssj0000605649
Score 2.596889
Snippet In this paper, an adaptive admittance control scheme is developed for robots to interact with time-varying environments. Admittance control is adopted to...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4551
SubjectTerms Adaptive control
Admittance
admittance control
Artificial neural networks
Control systems
Cost function
Electrical impedance
Impedance
Learning
Learning systems
Manipulators
Neural networks
neural networks (NNs)
reinforcement learning (RL)
Robot control
robot–environment interaction
Tracking
Trajectory
Uncertainty
Title Neural Networks Enhanced Optimal Admittance Control of Robot-Environment Interaction Using Reinforcement Learning
URI https://ieeexplore.ieee.org/document/9367005
https://www.ncbi.nlm.nih.gov/pubmed/33651696
https://www.proquest.com/docview/2708642428
https://www.proquest.com/docview/2496252362
Volume 33
WOSCitedRecordID wos000732268100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RxKGXUkpLtwXkSr1RQxI7jn2s0KIeqlBRkPYWre0JIJUE2Gx_f8fOo6rUIvUSRck4ifSN42_G8wD4KKzUxGo1lzkqLq2t-VK7gtc5iSPq3Lq-2URRlnqxMN824NOUC4OIMfgMj8Np3Mv3rVsHV9mJCdXGQsHSZ0Wh-lytyZ-SEC9Xke1mqcp4JorFmCOTmJPLsvz6nazBLD0WIf0yD336hFBhl0j9sSTFHiv_pptx2Tnb_r8PfgkvBnrJPvf6sAMb2LyC7bF1Axtm8i48hKIcJFj2UeArNm9uYiwAO6d_yF14hL-77bpwjZ324eysrdlFa9uOz39nx7HoUuyzI1iMP2AXGKuxuuh4ZEMB1-vXcHU2vzz9wofuC9yJPO24MQSvsAkm3tO6vrSp8Uj8qpbKEcDBd0rmTJq4vPCyzlF7Y3Nt01oj2WwJijew2bQNvgVGRprzno6FtFJYq2tldaqsJ_aCS1PPIB0BqNxQmjx0yPhRRRMlMVXErwr4VQN-Mziaxtz3hTmelN4N6EySAzAz2B9xroa5u6qygsw8SdSFRn2YbtOsC1spywbbNclIQ4ZjRqv_DPZ6_ZieParVu7-_8z08z0IKRYxT24fN7nGNB7Dlfna3q8dDUu2FPoyq_QtL9vRn
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBQkuLVCgCwWMxA3cJrGd2EdUbVXEElBZpL1Fa3sClWgC3Sy_n7HzQEiAxCWKknES6RvH34znAfBCWKmJ1WouFeZcWlvztXYFrxWJI2plXd9soihLvVqZDzvwasqFQcQYfIbH4TTu5fvWbYOr7MSEamOhYOkNJWWW9Nlak0clIWaeR76bpXnGM1GsxiyZxJwsy3LxkezBLD0WIQFThU59QuRhnyj_bVGKXVb-TjjjwnO2_3-ffAf2BoLJXvcacRd2sLkH-2PzBjbM5QP4HspykGDZx4Fv2Lz5EqMB2Hv6i1yFR_iry64L19hpH9DO2ppdtLbt-PxXfhyLTsU-P4LFCAR2gbEeq4uuRzaUcP18Hz6dzZen53zov8CdUGnHjSGAhU0w8Z5W9rVNjUdiWLXMHUEcvKdk0KSJU4WXtULtjVXaprVGstoSFA9gt2kbPARGZprzno6FtFJYq-vc6jS3nvgLrk09g3QEoHJDcfLQI-NrFY2UxFQRvyrgVw34zeDlNOZbX5rjn9IHAZ1JcgBmBkcjztUwezdVVpChJ4m80Kjn022ad2EzZd1guyUZach0zGj9n8HDXj-mZ49q9ejP73wGt86X7xbV4k359jHczkJCRYxaO4Ld7nqLT-Cm-9Fdbq6fRgX_CWJP9sY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Networks+Enhanced+Optimal+Admittance+Control+of+Robot%E2%80%93Environment+Interaction+Using+Reinforcement+Learning&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Peng%2C+Guangzhu&rft.au=Chen%2C+C.+L.+Philip&rft.au=Yang%2C+Chenguang&rft.date=2022-09-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=33&rft.issue=9&rft.spage=4551&rft.epage=4561&rft_id=info:doi/10.1109%2FTNNLS.2021.3057958&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2021_3057958
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon