Neural Networks Enhanced Optimal Admittance Control of Robot-Environment Interaction Using Reinforcement Learning

In this paper, an adaptive admittance control scheme is developed for robots to interact with time-varying environments. Admittance control is adopted to achieve a compliant physical robot-environment interaction, and the uncertain environment with time-varying dynamics is defined as a linear system...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 33; číslo 9; s. 4551 - 4561
Hlavní autoři: Peng, Guangzhu, Chen, C. L. Philip, Yang, Chenguang
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, an adaptive admittance control scheme is developed for robots to interact with time-varying environments. Admittance control is adopted to achieve a compliant physical robot-environment interaction, and the uncertain environment with time-varying dynamics is defined as a linear system. A critic learning method is used to obtain the desired admittance parameters based on the cost function composed of interaction force and trajectory tracking without the knowledge of the environmental dynamics. To deal with dynamic uncertainties in the control system, a neural-network (NN)-based adaptive controller with a dynamic learning framework is developed to guarantee the trajectory tracking performance. Experiments are conducted and the results have verified the effectiveness of the proposed method.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2021.3057958