Numerical approximation of nonlinear neutral stochastic functional differential equations
The paper investigates numerical approximations for solution of neutral stochastic functional differential equation (NSFDE) with coefficients of the polynomial growth. The main aim is to develop the convergence in probability of Euler-Maruyama approximate solution under highly nonlinear growth condi...
Uložené v:
| Vydané v: | Journal of applied mathematics & computing Ročník 41; číslo 1-2; s. 427 - 445 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer-Verlag
01.03.2013
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1598-5865, 1865-2085 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The paper investigates numerical approximations for solution of neutral stochastic functional differential equation (NSFDE) with coefficients of the polynomial growth. The main aim is to develop the convergence in probability of Euler-Maruyama approximate solution under highly nonlinear growth conditions. The paper removes the linear growth condition of the existing results replacing by highly nonlinear growth conditions, so the convergence criteria here may cover a wider class of nonlinear systems. Moreover, we also prove the existence-and-uniqueness of the global solutions for NSFDEs with coefficients of the polynomial growth. Finally, two examples is provided to illustrate the main theory. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 1598-5865 1865-2085 |
| DOI: | 10.1007/s12190-012-0605-5 |