Numerical approximation of nonlinear neutral stochastic functional differential equations
The paper investigates numerical approximations for solution of neutral stochastic functional differential equation (NSFDE) with coefficients of the polynomial growth. The main aim is to develop the convergence in probability of Euler-Maruyama approximate solution under highly nonlinear growth condi...
Uloženo v:
| Vydáno v: | Journal of applied mathematics & computing Ročník 41; číslo 1-2; s. 427 - 445 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer-Verlag
01.03.2013
Springer Nature B.V |
| Témata: | |
| ISSN: | 1598-5865, 1865-2085 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The paper investigates numerical approximations for solution of neutral stochastic functional differential equation (NSFDE) with coefficients of the polynomial growth. The main aim is to develop the convergence in probability of Euler-Maruyama approximate solution under highly nonlinear growth conditions. The paper removes the linear growth condition of the existing results replacing by highly nonlinear growth conditions, so the convergence criteria here may cover a wider class of nonlinear systems. Moreover, we also prove the existence-and-uniqueness of the global solutions for NSFDEs with coefficients of the polynomial growth. Finally, two examples is provided to illustrate the main theory. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 1598-5865 1865-2085 |
| DOI: | 10.1007/s12190-012-0605-5 |