Numerical approximation of nonlinear neutral stochastic functional differential equations

The paper investigates numerical approximations for solution of neutral stochastic functional differential equation (NSFDE) with coefficients of the polynomial growth. The main aim is to develop the convergence in probability of Euler-Maruyama approximate solution under highly nonlinear growth condi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of applied mathematics & computing Ročník 41; číslo 1-2; s. 427 - 445
Hlavní autoři: Zhou, Shaobo, Fang, Zheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer-Verlag 01.03.2013
Springer Nature B.V
Témata:
ISSN:1598-5865, 1865-2085
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The paper investigates numerical approximations for solution of neutral stochastic functional differential equation (NSFDE) with coefficients of the polynomial growth. The main aim is to develop the convergence in probability of Euler-Maruyama approximate solution under highly nonlinear growth conditions. The paper removes the linear growth condition of the existing results replacing by highly nonlinear growth conditions, so the convergence criteria here may cover a wider class of nonlinear systems. Moreover, we also prove the existence-and-uniqueness of the global solutions for NSFDEs with coefficients of the polynomial growth. Finally, two examples is provided to illustrate the main theory.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1598-5865
1865-2085
DOI:10.1007/s12190-012-0605-5