5-D Epanechnikov Mixture-of-Experts in Light Field Image Compression
In this study, we propose a modeling-based compression approach for dense/lenslet light field images captured by Plenoptic 2.0 with square microlenses. This method employs the 5-D Epanechnikov Kernel (5-D EK) and its associated theories. Owing to the limitations of modeling larger image block using...
Uložené v:
| Vydané v: | IEEE transactions on image processing Ročník 33; s. 4029 - 4043 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this study, we propose a modeling-based compression approach for dense/lenslet light field images captured by Plenoptic 2.0 with square microlenses. This method employs the 5-D Epanechnikov Kernel (5-D EK) and its associated theories. Owing to the limitations of modeling larger image block using the Epanechnikov Mixture Regression (EMR), a 5-D Epanechnikov Mixture-of-Experts using Gaussian Initialization (5-D EMoE-GI) is proposed. This approach outperforms 5-D Gaussian Mixture Regression (5-D GMR). The modeling aspect of our coding framework utilizes the entire EI and the 5D Adaptive Model Selection (5-D AMLS) algorithm. The experimental results demonstrate that the decoded rendered images produced by our method are perceptually superior, outperforming High Efficiency Video Coding (HEVC) and JPEG 2000 at a bit depth below 0.06bpp. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1057-7149 1941-0042 1941-0042 |
| DOI: | 10.1109/TIP.2024.3418350 |