5-D Epanechnikov Mixture-of-Experts in Light Field Image Compression
In this study, we propose a modeling-based compression approach for dense/lenslet light field images captured by Plenoptic 2.0 with square microlenses. This method employs the 5-D Epanechnikov Kernel (5-D EK) and its associated theories. Owing to the limitations of modeling larger image block using...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on image processing Jg. 33; S. 4029 - 4043 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this study, we propose a modeling-based compression approach for dense/lenslet light field images captured by Plenoptic 2.0 with square microlenses. This method employs the 5-D Epanechnikov Kernel (5-D EK) and its associated theories. Owing to the limitations of modeling larger image block using the Epanechnikov Mixture Regression (EMR), a 5-D Epanechnikov Mixture-of-Experts using Gaussian Initialization (5-D EMoE-GI) is proposed. This approach outperforms 5-D Gaussian Mixture Regression (5-D GMR). The modeling aspect of our coding framework utilizes the entire EI and the 5D Adaptive Model Selection (5-D AMLS) algorithm. The experimental results demonstrate that the decoded rendered images produced by our method are perceptually superior, outperforming High Efficiency Video Coding (HEVC) and JPEG 2000 at a bit depth below 0.06bpp. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1057-7149 1941-0042 1941-0042 |
| DOI: | 10.1109/TIP.2024.3418350 |