Gröbner bases and the number of Latin squares related to autotopisms of order ≤7

Latin squares can be seen as multiplication tables of quasigroups, which are, in general, non-commutative and non-associative algebraic structures. The number of Latin squares having a fixed isotopism in their autotopism group is at the moment an open problem. In this paper, we use Gröbner bases to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of symbolic computation Jg. 42; H. 11; S. 1142 - 1154
Hauptverfasser: Falcón, R.M., Martín-Morales, J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.11.2007
Schlagworte:
ISSN:0747-7171, 1095-855X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Latin squares can be seen as multiplication tables of quasigroups, which are, in general, non-commutative and non-associative algebraic structures. The number of Latin squares having a fixed isotopism in their autotopism group is at the moment an open problem. In this paper, we use Gröbner bases to describe an algorithm that allows one to obtain the previous number. Specifically, this algorithm is implemented in Singular to obtain the number of Latin squares related to any autotopism of Latin squares of order up to 7.
ISSN:0747-7171
1095-855X
DOI:10.1016/j.jsc.2007.07.004