Gröbner bases and the number of Latin squares related to autotopisms of order ≤7

Latin squares can be seen as multiplication tables of quasigroups, which are, in general, non-commutative and non-associative algebraic structures. The number of Latin squares having a fixed isotopism in their autotopism group is at the moment an open problem. In this paper, we use Gröbner bases to...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of symbolic computation Ročník 42; číslo 11; s. 1142 - 1154
Hlavní autori: Falcón, R.M., Martín-Morales, J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.11.2007
Predmet:
ISSN:0747-7171, 1095-855X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Latin squares can be seen as multiplication tables of quasigroups, which are, in general, non-commutative and non-associative algebraic structures. The number of Latin squares having a fixed isotopism in their autotopism group is at the moment an open problem. In this paper, we use Gröbner bases to describe an algorithm that allows one to obtain the previous number. Specifically, this algorithm is implemented in Singular to obtain the number of Latin squares related to any autotopism of Latin squares of order up to 7.
ISSN:0747-7171
1095-855X
DOI:10.1016/j.jsc.2007.07.004