Subdifferential analysis of differential inclusions via discretization

The framework of differential inclusions encompasses modern optimal control and the calculus of variations. Necessary optimality conditions in the literature identify potentially optimal paths, but do not show how to perturb paths to optimality. We first look at the corresponding discretized inclusi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Differential Equations Jg. 253; H. 1; S. 203 - 224
1. Verfasser: Pang, C.H. Jeffrey
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.07.2012
Schlagworte:
ISSN:0022-0396, 1090-2732
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The framework of differential inclusions encompasses modern optimal control and the calculus of variations. Necessary optimality conditions in the literature identify potentially optimal paths, but do not show how to perturb paths to optimality. We first look at the corresponding discretized inclusions, estimating the subdifferential dependence of the optimal value in terms of the endpoints of the feasible paths. Our approach is to first estimate the coderivative of the reachable map. The discretized (nonsmooth) Euler–Lagrange and Transversality Conditions follow as a corollary. We obtain corresponding results for differential inclusions by passing discretized inclusions to the limit.
ISSN:0022-0396
1090-2732
DOI:10.1016/j.jde.2012.03.019