Subdifferential analysis of differential inclusions via discretization

The framework of differential inclusions encompasses modern optimal control and the calculus of variations. Necessary optimality conditions in the literature identify potentially optimal paths, but do not show how to perturb paths to optimality. We first look at the corresponding discretized inclusi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of Differential Equations Ročník 253; číslo 1; s. 203 - 224
Hlavný autor: Pang, C.H. Jeffrey
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.07.2012
Predmet:
ISSN:0022-0396, 1090-2732
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The framework of differential inclusions encompasses modern optimal control and the calculus of variations. Necessary optimality conditions in the literature identify potentially optimal paths, but do not show how to perturb paths to optimality. We first look at the corresponding discretized inclusions, estimating the subdifferential dependence of the optimal value in terms of the endpoints of the feasible paths. Our approach is to first estimate the coderivative of the reachable map. The discretized (nonsmooth) Euler–Lagrange and Transversality Conditions follow as a corollary. We obtain corresponding results for differential inclusions by passing discretized inclusions to the limit.
ISSN:0022-0396
1090-2732
DOI:10.1016/j.jde.2012.03.019