Subdifferential analysis of differential inclusions via discretization
The framework of differential inclusions encompasses modern optimal control and the calculus of variations. Necessary optimality conditions in the literature identify potentially optimal paths, but do not show how to perturb paths to optimality. We first look at the corresponding discretized inclusi...
Uložené v:
| Vydané v: | Journal of Differential Equations Ročník 253; číslo 1; s. 203 - 224 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.07.2012
|
| Predmet: | |
| ISSN: | 0022-0396, 1090-2732 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The framework of differential inclusions encompasses modern optimal control and the calculus of variations. Necessary optimality conditions in the literature identify potentially optimal paths, but do not show how to perturb paths to optimality. We first look at the corresponding discretized inclusions, estimating the subdifferential dependence of the optimal value in terms of the endpoints of the feasible paths. Our approach is to first estimate the coderivative of the reachable map. The discretized (nonsmooth) Euler–Lagrange and Transversality Conditions follow as a corollary. We obtain corresponding results for differential inclusions by passing discretized inclusions to the limit. |
|---|---|
| ISSN: | 0022-0396 1090-2732 |
| DOI: | 10.1016/j.jde.2012.03.019 |