Subdifferential analysis of differential inclusions via discretization

The framework of differential inclusions encompasses modern optimal control and the calculus of variations. Necessary optimality conditions in the literature identify potentially optimal paths, but do not show how to perturb paths to optimality. We first look at the corresponding discretized inclusi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Differential Equations Ročník 253; číslo 1; s. 203 - 224
Hlavní autor: Pang, C.H. Jeffrey
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.07.2012
Témata:
ISSN:0022-0396, 1090-2732
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The framework of differential inclusions encompasses modern optimal control and the calculus of variations. Necessary optimality conditions in the literature identify potentially optimal paths, but do not show how to perturb paths to optimality. We first look at the corresponding discretized inclusions, estimating the subdifferential dependence of the optimal value in terms of the endpoints of the feasible paths. Our approach is to first estimate the coderivative of the reachable map. The discretized (nonsmooth) Euler–Lagrange and Transversality Conditions follow as a corollary. We obtain corresponding results for differential inclusions by passing discretized inclusions to the limit.
ISSN:0022-0396
1090-2732
DOI:10.1016/j.jde.2012.03.019