A note on computing with Kolmogorov Superpositions without iterations

We extend Kolmogorov’s Superpositions to approximating arbitrary continuous functions with a noniterative approach that can be used by any neural network that uses these superpositions. Our approximation algorithm uses a modified dimension reducing function that allows for an increased number of sum...

Full description

Saved in:
Bibliographic Details
Published in:Neural networks Vol. 144; pp. 438 - 442
Main Authors: Demb, Robert, Sprecher, David
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.12.2021
Subjects:
ISSN:0893-6080, 1879-2782, 1879-2782
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We extend Kolmogorov’s Superpositions to approximating arbitrary continuous functions with a noniterative approach that can be used by any neural network that uses these superpositions. Our approximation algorithm uses a modified dimension reducing function that allows for an increased number of summands to achieve an error bound commensurate with that of r iterations for any r. This new variant of Kolmogorov’s Superpositions improves upon the original parallelism inherent in them by performing highly distributed parallel computations without synchronization. We note that this approach makes implementation much easier and more efficient on networks of modern parallel hardware, and thus makes it a more practical tool.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0893-6080
1879-2782
1879-2782
DOI:10.1016/j.neunet.2021.07.006