A note on computing with Kolmogorov Superpositions without iterations
We extend Kolmogorov’s Superpositions to approximating arbitrary continuous functions with a noniterative approach that can be used by any neural network that uses these superpositions. Our approximation algorithm uses a modified dimension reducing function that allows for an increased number of sum...
Uložené v:
| Vydané v: | Neural networks Ročník 144; s. 438 - 442 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.12.2021
|
| Predmet: | |
| ISSN: | 0893-6080, 1879-2782, 1879-2782 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We extend Kolmogorov’s Superpositions to approximating arbitrary continuous functions with a noniterative approach that can be used by any neural network that uses these superpositions. Our approximation algorithm uses a modified dimension reducing function that allows for an increased number of summands to achieve an error bound commensurate with that of r iterations for any r. This new variant of Kolmogorov’s Superpositions improves upon the original parallelism inherent in them by performing highly distributed parallel computations without synchronization. We note that this approach makes implementation much easier and more efficient on networks of modern parallel hardware, and thus makes it a more practical tool. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0893-6080 1879-2782 1879-2782 |
| DOI: | 10.1016/j.neunet.2021.07.006 |