A note on computing with Kolmogorov Superpositions without iterations

We extend Kolmogorov’s Superpositions to approximating arbitrary continuous functions with a noniterative approach that can be used by any neural network that uses these superpositions. Our approximation algorithm uses a modified dimension reducing function that allows for an increased number of sum...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neural networks Ročník 144; s. 438 - 442
Hlavní autori: Demb, Robert, Sprecher, David
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.12.2021
Predmet:
ISSN:0893-6080, 1879-2782, 1879-2782
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We extend Kolmogorov’s Superpositions to approximating arbitrary continuous functions with a noniterative approach that can be used by any neural network that uses these superpositions. Our approximation algorithm uses a modified dimension reducing function that allows for an increased number of summands to achieve an error bound commensurate with that of r iterations for any r. This new variant of Kolmogorov’s Superpositions improves upon the original parallelism inherent in them by performing highly distributed parallel computations without synchronization. We note that this approach makes implementation much easier and more efficient on networks of modern parallel hardware, and thus makes it a more practical tool.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0893-6080
1879-2782
1879-2782
DOI:10.1016/j.neunet.2021.07.006