Optimality Conditions for Multiobjective Optimization Problems via Image Space Analysis

In this article, optimality conditions on (weak) efficient solutions in multiobjective optimization problems are investigated by using the image space analysis. A class of strong separation functions is constructed by oriented distance functions. Simultaneously, a generalized Lagrange function is in...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Numerical functional analysis and optimization Ročník 44; číslo 7; s. 708 - 723
Hlavní autori: Xu, Yingrang, Li, Shengjie
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Taylor & Francis 19.05.2023
Taylor & Francis Ltd
Predmet:
ISSN:0163-0563, 1532-2467
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this article, optimality conditions on (weak) efficient solutions in multiobjective optimization problems are investigated by using the image space analysis. A class of strong separation functions is constructed by oriented distance functions. Simultaneously, a generalized Lagrange function is introduced by the class of strong separation functions. Then, generalized Karush-Kuhn-Tucker (KKT for short) necessary optimality conditions are established without constraint qualifications or regularity conditions. Under the suitable assumptions, Lagrangian-type sufficient optimality conditions are also characterized. Moreover, the difference between strong separation and weak separation methods is explained.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0163-0563
1532-2467
DOI:10.1080/01630563.2023.2208867