Optimality Conditions for Multiobjective Optimization Problems via Image Space Analysis

In this article, optimality conditions on (weak) efficient solutions in multiobjective optimization problems are investigated by using the image space analysis. A class of strong separation functions is constructed by oriented distance functions. Simultaneously, a generalized Lagrange function is in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical functional analysis and optimization Ročník 44; číslo 7; s. 708 - 723
Hlavní autoři: Xu, Yingrang, Li, Shengjie
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 19.05.2023
Taylor & Francis Ltd
Témata:
ISSN:0163-0563, 1532-2467
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article, optimality conditions on (weak) efficient solutions in multiobjective optimization problems are investigated by using the image space analysis. A class of strong separation functions is constructed by oriented distance functions. Simultaneously, a generalized Lagrange function is introduced by the class of strong separation functions. Then, generalized Karush-Kuhn-Tucker (KKT for short) necessary optimality conditions are established without constraint qualifications or regularity conditions. Under the suitable assumptions, Lagrangian-type sufficient optimality conditions are also characterized. Moreover, the difference between strong separation and weak separation methods is explained.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0163-0563
1532-2467
DOI:10.1080/01630563.2023.2208867