Renormalized oscillation theory for symplectic eigenvalue problems with nonlinear dependence on the spectral parameter

In this paper, we establish new renormalized oscillation theorems for discrete symplectic eigenvalue problems with Dirichlet boundary conditions. These theorems present the number of finite eigenvalues of the problem in the arbitrary interval using the number of focal points of a transformed conjoin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of difference equations and applications Jg. 26; H. 4; S. 458 - 487
1. Verfasser: Elyseeva, Julia
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 02.04.2020
Taylor & Francis Ltd
Schlagworte:
ISSN:1023-6198, 1563-5120
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we establish new renormalized oscillation theorems for discrete symplectic eigenvalue problems with Dirichlet boundary conditions. These theorems present the number of finite eigenvalues of the problem in the arbitrary interval using the number of focal points of a transformed conjoined basis associated with Wronskian of two principal solutions of the symplectic system evaluated at the endpoints a and b. We suppose that the symplectic coefficient matrix of the system depends nonlinearly on the spectral parameter and that it satisfies certain natural monotonicity assumptions. In our treatment, we admit possible oscillations in the coefficients of the symplectic system by incorporating their non-constant rank with respect to the spectral parameter.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1023-6198
1563-5120
DOI:10.1080/10236198.2020.1748020