Renormalized oscillation theory for symplectic eigenvalue problems with nonlinear dependence on the spectral parameter
In this paper, we establish new renormalized oscillation theorems for discrete symplectic eigenvalue problems with Dirichlet boundary conditions. These theorems present the number of finite eigenvalues of the problem in the arbitrary interval using the number of focal points of a transformed conjoin...
Uložené v:
| Vydané v: | Journal of difference equations and applications Ročník 26; číslo 4; s. 458 - 487 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Abingdon
Taylor & Francis
02.04.2020
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 1023-6198, 1563-5120 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we establish new renormalized oscillation theorems for discrete symplectic eigenvalue problems with Dirichlet boundary conditions. These theorems present the number of finite eigenvalues of the problem in the arbitrary interval
using the number of focal points of a transformed conjoined basis associated with Wronskian of two principal solutions of the symplectic system evaluated at the endpoints a and b. We suppose that the symplectic coefficient matrix of the system depends nonlinearly on the spectral parameter and that it satisfies certain natural monotonicity assumptions. In our treatment, we admit possible oscillations in the coefficients of the symplectic system by incorporating their non-constant rank with respect to the spectral parameter. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1023-6198 1563-5120 |
| DOI: | 10.1080/10236198.2020.1748020 |