On the numerical solution of direct and inverse problems for the heat equation in a semi-infinite region

We consider the initial boundary value problem for the heat equation in a region with infinite and finite boundaries (direct problem) and the related problem to reconstruct the finite boundary from Cauchy data on the infinite boundary (inverse problem). The numerical solution of the direct problem i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics Jg. 108; H. 1; S. 41 - 55
1. Verfasser: Chapko, Roman
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 15.08.1999
Elsevier
Schlagworte:
ISSN:0377-0427, 1879-1778
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the initial boundary value problem for the heat equation in a region with infinite and finite boundaries (direct problem) and the related problem to reconstruct the finite boundary from Cauchy data on the infinite boundary (inverse problem). The numerical solution of the direct problem is realized by a boundary integral equation method. For an approximate solution of the inverse problem we use a regularized Newton method based on numerical approach for the direct problem. Numerical examples illustrating our results are presented.
ISSN:0377-0427
1879-1778
DOI:10.1016/S0377-0427(99)00099-0