On the numerical solution of direct and inverse problems for the heat equation in a semi-infinite region

We consider the initial boundary value problem for the heat equation in a region with infinite and finite boundaries (direct problem) and the related problem to reconstruct the finite boundary from Cauchy data on the infinite boundary (inverse problem). The numerical solution of the direct problem i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational and applied mathematics Ročník 108; číslo 1; s. 41 - 55
Hlavní autor: Chapko, Roman
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 15.08.1999
Elsevier
Témata:
ISSN:0377-0427, 1879-1778
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the initial boundary value problem for the heat equation in a region with infinite and finite boundaries (direct problem) and the related problem to reconstruct the finite boundary from Cauchy data on the infinite boundary (inverse problem). The numerical solution of the direct problem is realized by a boundary integral equation method. For an approximate solution of the inverse problem we use a regularized Newton method based on numerical approach for the direct problem. Numerical examples illustrating our results are presented.
ISSN:0377-0427
1879-1778
DOI:10.1016/S0377-0427(99)00099-0