A Novel Adaptive Fuzzy Local Information C -Means Clustering Algorithm for Remotely Sensed Imagery Classification

This paper presents a novel adaptive fuzzy local information c-means (ADFLICM) clustering approach for remotely sensed imagery classification by incorporating the local spatial and gray level information constraints. The ADFLICM approach can enhance the conventional fuzzy c-means algorithm by produc...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing Vol. 55; no. 9; pp. 5057 - 5068
Main Authors: Zhang, Hua, Wang, Qunming, Shi, Wenzhong, Hao, Ming
Format: Journal Article
Language:English
Published: New York IEEE 01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0196-2892, 1558-0644
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents a novel adaptive fuzzy local information c-means (ADFLICM) clustering approach for remotely sensed imagery classification by incorporating the local spatial and gray level information constraints. The ADFLICM approach can enhance the conventional fuzzy c-means algorithm by producing homogeneous segmentation and reducing the edge blurring artifact simultaneously. The major contribution of ADFLICM is use of the new fuzzy local similarity measure based on pixel spatial attraction model, which adaptively determines the weighting factors for neighboring pixel effects without any experimentally set parameters. The weighting factor for each neighborhood is fully adaptive to the image content, and the balance between insensitiveness to noise and reduction of edge blurring artifact to preserve image details is automatically achieved by using the new fuzzy local similarity measure. Four different types of images were used in the experiments to examine the performance of ADFLICM. The experimental results indicate that ADFLICM produces greater accuracy than the other four methods and hence provides an effective clustering algorithm for classification of remotely sensed imagery.
AbstractList This paper presents a novel adaptive fuzzy local information c-means (ADFLICM) clustering approach for remotely sensed imagery classification by incorporating the local spatial and gray level information constraints. The ADFLICM approach can enhance the conventional fuzzy c-means algorithm by producing homogeneous segmentation and reducing the edge blurring artifact simultaneously. The major contribution of ADFLICM is use of the new fuzzy local similarity measure based on pixel spatial attraction model, which adaptively determines the weighting factors for neighboring pixel effects without any experimentally set parameters. The weighting factor for each neighborhood is fully adaptive to the image content, and the balance between insensitiveness to noise and reduction of edge blurring artifact to preserve image details is automatically achieved by using the new fuzzy local similarity measure. Four different types of images were used in the experiments to examine the performance of ADFLICM. The experimental results indicate that ADFLICM produces greater accuracy than the other four methods and hence provides an effective clustering algorithm for classification of remotely sensed imagery.
Author Qunming Wang
Ming Hao
Hua Zhang
Wenzhong Shi
Author_xml – sequence: 1
  givenname: Hua
  orcidid: 0000-0003-0945-6613
  surname: Zhang
  fullname: Zhang, Hua
– sequence: 2
  givenname: Qunming
  orcidid: 0000-0002-5188-0939
  surname: Wang
  fullname: Wang, Qunming
– sequence: 3
  givenname: Wenzhong
  surname: Shi
  fullname: Shi, Wenzhong
– sequence: 4
  givenname: Ming
  surname: Hao
  fullname: Hao, Ming
BookMark eNp9kMtOwzAQRS1UJMrjAxAbS6xTPI5jx8uqglKpgMRjHbnJpBglcbHdSu3Xk1LEggWr2ZxzZ-aekkHnOiTkEtgIgOmb1-nzy4gzUCOuGGcSjsgQsixPmBRiQIYMtEx4rvkJOQ3hgzEQGagh-RzTR7fBho4rs4p2g_Ruvdtt6dyVpqGzrna-NdG6jk5o8oCmC3TSrENEb7slHTdL5218b2nP0WdsXcRmS1-wC1jRWWuW6Le9YEKwtS2_g87JcW2agBc_84y83d2-Tu6T-dN0NhnPkzJNZUwyjapEA2IBvJZcZlUtjVG5ZopzJsSi7L8RC15Jo6WujNY9qJRc1JzlIjPpGbk-5K68-1xjiMWHW_uuX1lwUEJAxrXqKXWgSu9C8FgXpY3fd0ZvbFMAK_b9Fvt-i32_xU-_vQl_zJW3rfHbf52rg2MR8ZdXOhUAefoFGYqIIg
CODEN IGRSD2
CitedBy_id crossref_primary_10_1007_s10489_021_02722_7
crossref_primary_10_1016_j_ijar_2022_05_007
crossref_primary_10_1016_j_eswa_2024_124943
crossref_primary_10_1109_MGRS_2020_3032575
crossref_primary_10_3390_rs13204163
crossref_primary_10_1007_s12524_021_01346_1
crossref_primary_10_1109_TCSVT_2020_3027616
crossref_primary_10_1007_s11042_023_14703_8
crossref_primary_10_1007_s40815_020_01015_4
crossref_primary_10_1007_s11042_023_16569_2
crossref_primary_10_1007_s10489_024_06078_6
crossref_primary_10_1016_j_ins_2025_122225
crossref_primary_10_3390_rs14143490
crossref_primary_10_1007_s40815_025_02081_2
crossref_primary_10_1007_s40815_019_00706_x
crossref_primary_10_1016_j_cviu_2023_103765
crossref_primary_10_1109_JSTARS_2022_3225665
crossref_primary_10_1109_TGRS_2020_3023418
crossref_primary_10_1016_j_dsp_2021_103200
crossref_primary_10_1016_j_fss_2023_108792
crossref_primary_10_1007_s12524_021_01333_6
crossref_primary_10_1007_s40815_025_02068_z
crossref_primary_10_1109_TFUZZ_2022_3220925
crossref_primary_10_1007_s00521_022_07928_5
crossref_primary_10_1080_01431161_2019_1685718
crossref_primary_10_1080_01431161_2025_2487230
crossref_primary_10_3390_s22155906
crossref_primary_10_1016_j_asoc_2019_105888
crossref_primary_10_1109_TSMC_2019_2931699
crossref_primary_10_1007_s10661_025_14052_z
crossref_primary_10_1109_TGRS_2023_3309949
crossref_primary_10_1109_ACCESS_2020_2968936
crossref_primary_10_1016_j_ijar_2023_02_013
crossref_primary_10_1109_TFUZZ_2018_2883033
crossref_primary_10_1109_TFUZZ_2018_2889018
crossref_primary_10_1007_s00500_020_05403_8
crossref_primary_10_1016_j_rsase_2020_100319
crossref_primary_10_1109_TFUZZ_2021_3099560
crossref_primary_10_1007_s00371_023_02821_1
crossref_primary_10_1016_j_dsp_2021_102963
crossref_primary_10_1016_j_sigpro_2020_107518
crossref_primary_10_1109_JSTARS_2019_2895508
crossref_primary_10_1080_2150704X_2022_2132122
crossref_primary_10_1007_s12524_025_02286_w
crossref_primary_10_1109_TGRS_2022_3181417
crossref_primary_10_1007_s00034_024_02758_3
crossref_primary_10_3390_rs10091381
crossref_primary_10_3390_math10214056
crossref_primary_10_1080_22797254_2018_1561156
crossref_primary_10_3390_rs12244115
crossref_primary_10_3390_rs15143570
crossref_primary_10_1016_j_engappai_2022_104672
crossref_primary_10_1016_j_eswa_2020_114327
crossref_primary_10_3233_JCM_226001
crossref_primary_10_1016_j_dsp_2024_104492
crossref_primary_10_1109_TGRS_2024_3406217
crossref_primary_10_1007_s40815_020_00937_3
crossref_primary_10_1016_j_eswa_2023_120419
crossref_primary_10_3390_e26060517
crossref_primary_10_1016_j_engappai_2024_109135
crossref_primary_10_3233_JIFS_200197
crossref_primary_10_1080_10106049_2020_1797186
crossref_primary_10_1016_j_ins_2020_10_003
crossref_primary_10_1109_TGRS_2020_3032427
crossref_primary_10_1016_j_procs_2023_12_109
Cites_doi 10.1109/42.996338
10.1109/TSMCB.2004.831165
10.1080/01969727308546047
10.1007/BF02339490
10.1080/01969727308546046
10.1080/2150704X.2013.832842
10.1109/LGRS.2012.2231662
10.1049/el:19981523
10.1109/JSTARS.2014.2308531
10.1007/s11430-013-4689-z
10.1109/JSTARS.2011.2176721
10.1016/j.patcog.2007.01.006
10.1007/978-1-4757-0450-1
10.1109/TGRS.2004.842108
10.1109/CVPR.1999.786947
10.1109/IEMBS.2003.1279866
10.1109/LGRS.2012.2194770
10.1006/cviu.2001.0951
10.1016/j.patcog.2006.07.011
10.1016/j.patcog.2009.01.023
10.1007/978-3-319-09339-0_23
10.1080/01431160500497127
10.1006/gmip.1996.0021
10.1109/LGRS.2009.2025059
10.1016/0031-3203(92)90114-X
10.1080/01431160600746456
10.1109/TIP.2012.2219547
10.1109/TGRS.2008.916090
10.1016/j.patrec.2004.11.022
10.1109/TIP.2011.2170702
10.1109/34.85677
10.1109/JSTARS.2014.2303634
10.1109/TIP.2010.2040763
10.1016/0167-8655(96)00026-8
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2017.2702061
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 5068
ExternalDocumentID 10_1109_TGRS_2017_2702061
7934118
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20160248
  funderid: 10.13039/501100004608
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2015XKQY09
– fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
RIG
ID FETCH-LOGICAL-c336t-59e7cea14b12f6265df6aa7890722044bc2894b2d6a969da99b12776bf20845a3
IEDL.DBID RIE
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000408346600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:14:46 EDT 2025
Tue Nov 18 22:11:34 EST 2025
Sat Nov 29 02:49:51 EST 2025
Tue Aug 26 16:43:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-59e7cea14b12f6265df6aa7890722044bc2894b2d6a969da99b12776bf20845a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0945-6613
0000-0002-5188-0939
OpenAccessLink http://ira.lib.polyu.edu.hk/bitstream/10397/100759/1/Shi_Novel_Adaptive_Fuzzy.pdf
PQID 2174415297
PQPubID 85465
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2017_2702061
ieee_primary_7934118
crossref_primary_10_1109_TGRS_2017_2702061
proquest_journals_2174415297
PublicationCentury 2000
PublicationDate 2017-Sept.
2017-9-00
20170901
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-Sept.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref10
li (ref16) 2013; 10
ref2
ref1
ref17
ref19
ref18
fukuyama (ref32) 1989
ref24
ref23
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
tang (ref35) 2005
ref7
ref9
ref4
ref3
ref6
ref5
wang (ref26) 2014; 8589
References_xml – ident: ref10
  doi: 10.1109/42.996338
– ident: ref24
  doi: 10.1109/TSMCB.2004.831165
– ident: ref30
  doi: 10.1080/01969727308546047
– ident: ref29
  doi: 10.1007/BF02339490
– ident: ref8
  doi: 10.1080/01969727308546046
– ident: ref17
  doi: 10.1080/2150704X.2013.832842
– volume: 10
  start-page: 1124
  year: 2013
  ident: ref16
  article-title: A spatial clustering method with edge weighting for image segmentation
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2012.2231662
– ident: ref34
  doi: 10.1049/el:19981523
– ident: ref19
  doi: 10.1109/JSTARS.2014.2308531
– ident: ref18
  doi: 10.1007/s11430-013-4689-z
– ident: ref21
  doi: 10.1109/JSTARS.2011.2176721
– start-page: 1120
  year: 2005
  ident: ref35
  article-title: Improved validation index for fuzzy clustering
  publication-title: Proc Amer Control Conf
– ident: ref27
  doi: 10.1016/j.patcog.2007.01.006
– ident: ref9
  doi: 10.1007/978-1-4757-0450-1
– ident: ref3
  doi: 10.1109/TGRS.2004.842108
– ident: ref22
  doi: 10.1109/CVPR.1999.786947
– ident: ref25
  doi: 10.1109/IEMBS.2003.1279866
– start-page: 247
  year: 1989
  ident: ref32
  article-title: A new method of choosing the number of clusters for the fuzzy c-means method
  publication-title: 15th Fuzzy System Symp
– ident: ref6
  doi: 10.1109/LGRS.2012.2194770
– ident: ref23
  doi: 10.1006/cviu.2001.0951
– ident: ref11
  doi: 10.1016/j.patcog.2006.07.011
– ident: ref12
  doi: 10.1016/j.patcog.2009.01.023
– volume: 8589
  start-page: 230
  year: 2014
  ident: ref26
  article-title: An edge sensing fuzzy local information C-means clustering algorithm for image segmentation
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-319-09339-0_23
– ident: ref28
  doi: 10.1080/01431160500497127
– ident: ref7
  doi: 10.1006/gmip.1996.0021
– ident: ref2
  doi: 10.1109/LGRS.2009.2025059
– ident: ref4
  doi: 10.1016/0031-3203(92)90114-X
– ident: ref1
  doi: 10.1080/01431160600746456
– ident: ref15
  doi: 10.1109/TIP.2012.2219547
– ident: ref5
  doi: 10.1109/TGRS.2008.916090
– ident: ref36
  doi: 10.1016/j.patrec.2004.11.022
– ident: ref14
  doi: 10.1109/TIP.2011.2170702
– ident: ref33
  doi: 10.1109/34.85677
– ident: ref20
  doi: 10.1109/JSTARS.2014.2303634
– ident: ref13
  doi: 10.1109/TIP.2010.2040763
– ident: ref31
  doi: 10.1016/0167-8655(96)00026-8
SSID ssj0014517
Score 2.5066888
Snippet This paper presents a novel adaptive fuzzy local information c-means (ADFLICM) clustering approach for remotely sensed imagery classification by incorporating...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5057
SubjectTerms Algorithms
Blurring
Classification
Clustering
Clustering algorithms
fuzzy c-means (FCM) clustering
Image classification
Image edge detection
Image processing
Image segmentation
Imagery
Linear programming
local measure similarity
Nickel
Noise measurement
Noise reduction
Pixels
Remote sensing
remotely sensed imagery
Robustness
Similarity
Similarity measures
spatial information
Weighting
Title A Novel Adaptive Fuzzy Local Information C -Means Clustering Algorithm for Remotely Sensed Imagery Classification
URI https://ieeexplore.ieee.org/document/7934118
https://www.proquest.com/docview/2174415297
Volume 55
WOSCitedRecordID wos000408346600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5UFPTgW6wvcvAkRje72WRzLMWqoEV84W3ZZFMt1Fb7EOqvN5PGoiiCtz1MwpIvycxk5psB2FfKlJlmgkrDJeU60lQLLShnOkkNcq_9e8f9hWw0socHdTUFhxMujLXWJ5_ZI_z0sfyya4b4VHbs9hJ3BvE0TEspxlytScSApyxQowV1TkQcIpgsUse3p9c3mMQlj5B8FQn2TQf5pio_bmKvXupL__uxZVgMZiSpjnFfgSnbWYWFL8UFV2HOJ3ea_hq8Vkmj-2adeFm84PVG6sP39xG5QD1GAiEJASI1Qi-tU16k1h5iBQU3Eam2H7u91uDpmTg5cm0dtrY9IjfO_7UlOX_GIhgj4ptrYtqRn2gd7uont7UzGlotUJMkYkBTZaWxBeOaxU3n46RlUxQFkmRlHEeca-PWlOu4FIUSqiyUcoIOBN2Mo4ynRbIBM51ux24CiXiTycS4ewRBERYr-qlMMJMlBRMqq0D0ufi5CXXIsR1GO_f-SKRyxCtHvPKAVwUOJkNexkU4_hJeQ4AmggGbCux8IpyHY9rP0R9DC0bJrd9HbcM8zj1OKtuBmUFvaHdh1rwNWv3ent-BH9W91lc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB7R0KpwoAWKSHnUB06oDutdr70-RhEBRIgqCBW31drrAFJIQh5I4dfX45ioiKoStz2MvSt_3hmPZ74ZgAOlTJlpJqg0XFKuI0210IJyppPUIPfa33f8bsl2O7u5Ub-W4OeCC2Ot9clntoaPPpZfDswUr8qO3F7i7kD8AZaxc1Zgay1iBjxlgRwtqHMj4hDDZJE66pxcXmEal6wh_SoS7JUV8m1V3uhib2CaX973aV9hLRwkSX2O_Dos2f4GrP5VXnADPvn0TjPehMc6aQ-erBMviyEqONKcPj_PSAstGQmUJISINAi9sM58kUZvijUU3ESk3rsdjO4ndw_EyZFL69C1vRm5ch6wLcnZA5bBmBHfXhMTj_xE3-C6edxpnNLQbIGaJBETmiorjS0Y1yzuOi8nLbuiKJAmK-M44lwbt6Zcx6UolFBloZQTlFLobhxlPC2SLaj0B327DSTiXSYT4zQJgiIs1vRTmWAmSwomVFaF6GXxcxMqkWNDjF7uPZJI5YhXjnjlAa8qHC6GDOdlOP4nvIkALQQDNlXYfUE4Dz_qOEePDM8wSn7_96gf8Pm0c9HKW2ft8x1YwffMU8x2oTIZTe0efDRPk_vxaN_vxj8qENmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Adaptive+Fuzzy+Local+Information+%24C%24+-Means+Clustering+Algorithm+for+Remotely+Sensed+Imagery+Classification&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zhang%2C+Hua&rft.au=Wang%2C+Qunming&rft.au=Shi%2C+Wenzhong&rft.au=Hao%2C+Ming&rft.date=2017-09-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=55&rft.issue=9&rft.spage=5057&rft.epage=5068&rft_id=info:doi/10.1109%2FTGRS.2017.2702061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2017_2702061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon