A Novel Adaptive Fuzzy Local Information C -Means Clustering Algorithm for Remotely Sensed Imagery Classification
This paper presents a novel adaptive fuzzy local information c-means (ADFLICM) clustering approach for remotely sensed imagery classification by incorporating the local spatial and gray level information constraints. The ADFLICM approach can enhance the conventional fuzzy c-means algorithm by produc...
Saved in:
| Published in: | IEEE transactions on geoscience and remote sensing Vol. 55; no. 9; pp. 5057 - 5068 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper presents a novel adaptive fuzzy local information c-means (ADFLICM) clustering approach for remotely sensed imagery classification by incorporating the local spatial and gray level information constraints. The ADFLICM approach can enhance the conventional fuzzy c-means algorithm by producing homogeneous segmentation and reducing the edge blurring artifact simultaneously. The major contribution of ADFLICM is use of the new fuzzy local similarity measure based on pixel spatial attraction model, which adaptively determines the weighting factors for neighboring pixel effects without any experimentally set parameters. The weighting factor for each neighborhood is fully adaptive to the image content, and the balance between insensitiveness to noise and reduction of edge blurring artifact to preserve image details is automatically achieved by using the new fuzzy local similarity measure. Four different types of images were used in the experiments to examine the performance of ADFLICM. The experimental results indicate that ADFLICM produces greater accuracy than the other four methods and hence provides an effective clustering algorithm for classification of remotely sensed imagery. |
|---|---|
| AbstractList | This paper presents a novel adaptive fuzzy local information c-means (ADFLICM) clustering approach for remotely sensed imagery classification by incorporating the local spatial and gray level information constraints. The ADFLICM approach can enhance the conventional fuzzy c-means algorithm by producing homogeneous segmentation and reducing the edge blurring artifact simultaneously. The major contribution of ADFLICM is use of the new fuzzy local similarity measure based on pixel spatial attraction model, which adaptively determines the weighting factors for neighboring pixel effects without any experimentally set parameters. The weighting factor for each neighborhood is fully adaptive to the image content, and the balance between insensitiveness to noise and reduction of edge blurring artifact to preserve image details is automatically achieved by using the new fuzzy local similarity measure. Four different types of images were used in the experiments to examine the performance of ADFLICM. The experimental results indicate that ADFLICM produces greater accuracy than the other four methods and hence provides an effective clustering algorithm for classification of remotely sensed imagery. |
| Author | Qunming Wang Ming Hao Hua Zhang Wenzhong Shi |
| Author_xml | – sequence: 1 givenname: Hua orcidid: 0000-0003-0945-6613 surname: Zhang fullname: Zhang, Hua – sequence: 2 givenname: Qunming orcidid: 0000-0002-5188-0939 surname: Wang fullname: Wang, Qunming – sequence: 3 givenname: Wenzhong surname: Shi fullname: Shi, Wenzhong – sequence: 4 givenname: Ming surname: Hao fullname: Hao, Ming |
| BookMark | eNp9kMtOwzAQRS1UJMrjAxAbS6xTPI5jx8uqglKpgMRjHbnJpBglcbHdSu3Xk1LEggWr2ZxzZ-aekkHnOiTkEtgIgOmb1-nzy4gzUCOuGGcSjsgQsixPmBRiQIYMtEx4rvkJOQ3hgzEQGagh-RzTR7fBho4rs4p2g_Ruvdtt6dyVpqGzrna-NdG6jk5o8oCmC3TSrENEb7slHTdL5218b2nP0WdsXcRmS1-wC1jRWWuW6Le9YEKwtS2_g87JcW2agBc_84y83d2-Tu6T-dN0NhnPkzJNZUwyjapEA2IBvJZcZlUtjVG5ZopzJsSi7L8RC15Jo6WujNY9qJRc1JzlIjPpGbk-5K68-1xjiMWHW_uuX1lwUEJAxrXqKXWgSu9C8FgXpY3fd0ZvbFMAK_b9Fvt-i32_xU-_vQl_zJW3rfHbf52rg2MR8ZdXOhUAefoFGYqIIg |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1007_s10489_021_02722_7 crossref_primary_10_1016_j_ijar_2022_05_007 crossref_primary_10_1016_j_eswa_2024_124943 crossref_primary_10_1109_MGRS_2020_3032575 crossref_primary_10_3390_rs13204163 crossref_primary_10_1007_s12524_021_01346_1 crossref_primary_10_1109_TCSVT_2020_3027616 crossref_primary_10_1007_s11042_023_14703_8 crossref_primary_10_1007_s40815_020_01015_4 crossref_primary_10_1007_s11042_023_16569_2 crossref_primary_10_1007_s10489_024_06078_6 crossref_primary_10_1016_j_ins_2025_122225 crossref_primary_10_3390_rs14143490 crossref_primary_10_1007_s40815_025_02081_2 crossref_primary_10_1007_s40815_019_00706_x crossref_primary_10_1016_j_cviu_2023_103765 crossref_primary_10_1109_JSTARS_2022_3225665 crossref_primary_10_1109_TGRS_2020_3023418 crossref_primary_10_1016_j_dsp_2021_103200 crossref_primary_10_1016_j_fss_2023_108792 crossref_primary_10_1007_s12524_021_01333_6 crossref_primary_10_1007_s40815_025_02068_z crossref_primary_10_1109_TFUZZ_2022_3220925 crossref_primary_10_1007_s00521_022_07928_5 crossref_primary_10_1080_01431161_2019_1685718 crossref_primary_10_1080_01431161_2025_2487230 crossref_primary_10_3390_s22155906 crossref_primary_10_1016_j_asoc_2019_105888 crossref_primary_10_1109_TSMC_2019_2931699 crossref_primary_10_1007_s10661_025_14052_z crossref_primary_10_1109_TGRS_2023_3309949 crossref_primary_10_1109_ACCESS_2020_2968936 crossref_primary_10_1016_j_ijar_2023_02_013 crossref_primary_10_1109_TFUZZ_2018_2883033 crossref_primary_10_1109_TFUZZ_2018_2889018 crossref_primary_10_1007_s00500_020_05403_8 crossref_primary_10_1016_j_rsase_2020_100319 crossref_primary_10_1109_TFUZZ_2021_3099560 crossref_primary_10_1007_s00371_023_02821_1 crossref_primary_10_1016_j_dsp_2021_102963 crossref_primary_10_1016_j_sigpro_2020_107518 crossref_primary_10_1109_JSTARS_2019_2895508 crossref_primary_10_1080_2150704X_2022_2132122 crossref_primary_10_1007_s12524_025_02286_w crossref_primary_10_1109_TGRS_2022_3181417 crossref_primary_10_1007_s00034_024_02758_3 crossref_primary_10_3390_rs10091381 crossref_primary_10_3390_math10214056 crossref_primary_10_1080_22797254_2018_1561156 crossref_primary_10_3390_rs12244115 crossref_primary_10_3390_rs15143570 crossref_primary_10_1016_j_engappai_2022_104672 crossref_primary_10_1016_j_eswa_2020_114327 crossref_primary_10_3233_JCM_226001 crossref_primary_10_1016_j_dsp_2024_104492 crossref_primary_10_1109_TGRS_2024_3406217 crossref_primary_10_1007_s40815_020_00937_3 crossref_primary_10_1016_j_eswa_2023_120419 crossref_primary_10_3390_e26060517 crossref_primary_10_1016_j_engappai_2024_109135 crossref_primary_10_3233_JIFS_200197 crossref_primary_10_1080_10106049_2020_1797186 crossref_primary_10_1016_j_ins_2020_10_003 crossref_primary_10_1109_TGRS_2020_3032427 crossref_primary_10_1016_j_procs_2023_12_109 |
| Cites_doi | 10.1109/42.996338 10.1109/TSMCB.2004.831165 10.1080/01969727308546047 10.1007/BF02339490 10.1080/01969727308546046 10.1080/2150704X.2013.832842 10.1109/LGRS.2012.2231662 10.1049/el:19981523 10.1109/JSTARS.2014.2308531 10.1007/s11430-013-4689-z 10.1109/JSTARS.2011.2176721 10.1016/j.patcog.2007.01.006 10.1007/978-1-4757-0450-1 10.1109/TGRS.2004.842108 10.1109/CVPR.1999.786947 10.1109/IEMBS.2003.1279866 10.1109/LGRS.2012.2194770 10.1006/cviu.2001.0951 10.1016/j.patcog.2006.07.011 10.1016/j.patcog.2009.01.023 10.1007/978-3-319-09339-0_23 10.1080/01431160500497127 10.1006/gmip.1996.0021 10.1109/LGRS.2009.2025059 10.1016/0031-3203(92)90114-X 10.1080/01431160600746456 10.1109/TIP.2012.2219547 10.1109/TGRS.2008.916090 10.1016/j.patrec.2004.11.022 10.1109/TIP.2011.2170702 10.1109/34.85677 10.1109/JSTARS.2014.2303634 10.1109/TIP.2010.2040763 10.1016/0167-8655(96)00026-8 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2017.2702061 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 5068 |
| ExternalDocumentID | 10_1109_TGRS_2017_2702061 7934118 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20160248 funderid: 10.13039/501100004608 – fundername: Fundamental Research Funds for the Central Universities grantid: 2015XKQY09 – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M RIG |
| ID | FETCH-LOGICAL-c336t-59e7cea14b12f6265df6aa7890722044bc2894b2d6a969da99b12776bf20845a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 76 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000408346600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 08:14:46 EDT 2025 Tue Nov 18 22:11:34 EST 2025 Sat Nov 29 02:49:51 EST 2025 Tue Aug 26 16:43:24 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c336t-59e7cea14b12f6265df6aa7890722044bc2894b2d6a969da99b12776bf20845a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0945-6613 0000-0002-5188-0939 |
| OpenAccessLink | http://ira.lib.polyu.edu.hk/bitstream/10397/100759/1/Shi_Novel_Adaptive_Fuzzy.pdf |
| PQID | 2174415297 |
| PQPubID | 85465 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_TGRS_2017_2702061 ieee_primary_7934118 crossref_primary_10_1109_TGRS_2017_2702061 proquest_journals_2174415297 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Sept. 2017-9-00 20170901 |
| PublicationDateYYYYMMDD | 2017-09-01 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-Sept. |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref12 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref10 li (ref16) 2013; 10 ref2 ref1 ref17 ref19 ref18 fukuyama (ref32) 1989 ref24 ref23 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 tang (ref35) 2005 ref7 ref9 ref4 ref3 ref6 ref5 wang (ref26) 2014; 8589 |
| References_xml | – ident: ref10 doi: 10.1109/42.996338 – ident: ref24 doi: 10.1109/TSMCB.2004.831165 – ident: ref30 doi: 10.1080/01969727308546047 – ident: ref29 doi: 10.1007/BF02339490 – ident: ref8 doi: 10.1080/01969727308546046 – ident: ref17 doi: 10.1080/2150704X.2013.832842 – volume: 10 start-page: 1124 year: 2013 ident: ref16 article-title: A spatial clustering method with edge weighting for image segmentation publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2012.2231662 – ident: ref34 doi: 10.1049/el:19981523 – ident: ref19 doi: 10.1109/JSTARS.2014.2308531 – ident: ref18 doi: 10.1007/s11430-013-4689-z – ident: ref21 doi: 10.1109/JSTARS.2011.2176721 – start-page: 1120 year: 2005 ident: ref35 article-title: Improved validation index for fuzzy clustering publication-title: Proc Amer Control Conf – ident: ref27 doi: 10.1016/j.patcog.2007.01.006 – ident: ref9 doi: 10.1007/978-1-4757-0450-1 – ident: ref3 doi: 10.1109/TGRS.2004.842108 – ident: ref22 doi: 10.1109/CVPR.1999.786947 – ident: ref25 doi: 10.1109/IEMBS.2003.1279866 – start-page: 247 year: 1989 ident: ref32 article-title: A new method of choosing the number of clusters for the fuzzy c-means method publication-title: 15th Fuzzy System Symp – ident: ref6 doi: 10.1109/LGRS.2012.2194770 – ident: ref23 doi: 10.1006/cviu.2001.0951 – ident: ref11 doi: 10.1016/j.patcog.2006.07.011 – ident: ref12 doi: 10.1016/j.patcog.2009.01.023 – volume: 8589 start-page: 230 year: 2014 ident: ref26 article-title: An edge sensing fuzzy local information C-means clustering algorithm for image segmentation publication-title: Lecture Notes in Computer Science doi: 10.1007/978-3-319-09339-0_23 – ident: ref28 doi: 10.1080/01431160500497127 – ident: ref7 doi: 10.1006/gmip.1996.0021 – ident: ref2 doi: 10.1109/LGRS.2009.2025059 – ident: ref4 doi: 10.1016/0031-3203(92)90114-X – ident: ref1 doi: 10.1080/01431160600746456 – ident: ref15 doi: 10.1109/TIP.2012.2219547 – ident: ref5 doi: 10.1109/TGRS.2008.916090 – ident: ref36 doi: 10.1016/j.patrec.2004.11.022 – ident: ref14 doi: 10.1109/TIP.2011.2170702 – ident: ref33 doi: 10.1109/34.85677 – ident: ref20 doi: 10.1109/JSTARS.2014.2303634 – ident: ref13 doi: 10.1109/TIP.2010.2040763 – ident: ref31 doi: 10.1016/0167-8655(96)00026-8 |
| SSID | ssj0014517 |
| Score | 2.5066888 |
| Snippet | This paper presents a novel adaptive fuzzy local information c-means (ADFLICM) clustering approach for remotely sensed imagery classification by incorporating... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5057 |
| SubjectTerms | Algorithms Blurring Classification Clustering Clustering algorithms fuzzy c-means (FCM) clustering Image classification Image edge detection Image processing Image segmentation Imagery Linear programming local measure similarity Nickel Noise measurement Noise reduction Pixels Remote sensing remotely sensed imagery Robustness Similarity Similarity measures spatial information Weighting |
| Title | A Novel Adaptive Fuzzy Local Information C -Means Clustering Algorithm for Remotely Sensed Imagery Classification |
| URI | https://ieeexplore.ieee.org/document/7934118 https://www.proquest.com/docview/2174415297 |
| Volume | 55 |
| WOSCitedRecordID | wos000408346600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5UFPTgW6wvcvAkRje72WRzLMWqoEV84W3ZZFMt1Fb7EOqvN5PGoiiCtz1MwpIvycxk5psB2FfKlJlmgkrDJeU60lQLLShnOkkNcq_9e8f9hWw0socHdTUFhxMujLXWJ5_ZI_z0sfyya4b4VHbs9hJ3BvE0TEspxlytScSApyxQowV1TkQcIpgsUse3p9c3mMQlj5B8FQn2TQf5pio_bmKvXupL__uxZVgMZiSpjnFfgSnbWYWFL8UFV2HOJ3ea_hq8Vkmj-2adeFm84PVG6sP39xG5QD1GAiEJASI1Qi-tU16k1h5iBQU3Eam2H7u91uDpmTg5cm0dtrY9IjfO_7UlOX_GIhgj4ptrYtqRn2gd7uont7UzGlotUJMkYkBTZaWxBeOaxU3n46RlUxQFkmRlHEeca-PWlOu4FIUSqiyUcoIOBN2Mo4ynRbIBM51ux24CiXiTycS4ewRBERYr-qlMMJMlBRMqq0D0ufi5CXXIsR1GO_f-SKRyxCtHvPKAVwUOJkNexkU4_hJeQ4AmggGbCux8IpyHY9rP0R9DC0bJrd9HbcM8zj1OKtuBmUFvaHdh1rwNWv3ent-BH9W91lc |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB7R0KpwoAWKSHnUB06oDutdr70-RhEBRIgqCBW31drrAFJIQh5I4dfX45ioiKoStz2MvSt_3hmPZ74ZgAOlTJlpJqg0XFKuI0210IJyppPUIPfa33f8bsl2O7u5Ub-W4OeCC2Ot9clntoaPPpZfDswUr8qO3F7i7kD8AZaxc1Zgay1iBjxlgRwtqHMj4hDDZJE66pxcXmEal6wh_SoS7JUV8m1V3uhib2CaX973aV9hLRwkSX2O_Dos2f4GrP5VXnADPvn0TjPehMc6aQ-erBMviyEqONKcPj_PSAstGQmUJISINAi9sM58kUZvijUU3ESk3rsdjO4ndw_EyZFL69C1vRm5ch6wLcnZA5bBmBHfXhMTj_xE3-C6edxpnNLQbIGaJBETmiorjS0Y1yzuOi8nLbuiKJAmK-M44lwbt6Zcx6UolFBloZQTlFLobhxlPC2SLaj0B327DSTiXSYT4zQJgiIs1vRTmWAmSwomVFaF6GXxcxMqkWNDjF7uPZJI5YhXjnjlAa8qHC6GDOdlOP4nvIkALQQDNlXYfUE4Dz_qOEePDM8wSn7_96gf8Pm0c9HKW2ft8x1YwffMU8x2oTIZTe0efDRPk_vxaN_vxj8qENmg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Adaptive+Fuzzy+Local+Information+%24C%24+-Means+Clustering+Algorithm+for+Remotely+Sensed+Imagery+Classification&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zhang%2C+Hua&rft.au=Wang%2C+Qunming&rft.au=Shi%2C+Wenzhong&rft.au=Hao%2C+Ming&rft.date=2017-09-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=55&rft.issue=9&rft.spage=5057&rft.epage=5068&rft_id=info:doi/10.1109%2FTGRS.2017.2702061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2017_2702061 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |