A Novel Adaptive Fuzzy Local Information C -Means Clustering Algorithm for Remotely Sensed Imagery Classification

This paper presents a novel adaptive fuzzy local information c-means (ADFLICM) clustering approach for remotely sensed imagery classification by incorporating the local spatial and gray level information constraints. The ADFLICM approach can enhance the conventional fuzzy c-means algorithm by produc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on geoscience and remote sensing Ročník 55; číslo 9; s. 5057 - 5068
Hlavní autoři: Zhang, Hua, Wang, Qunming, Shi, Wenzhong, Hao, Ming
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0196-2892, 1558-0644
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a novel adaptive fuzzy local information c-means (ADFLICM) clustering approach for remotely sensed imagery classification by incorporating the local spatial and gray level information constraints. The ADFLICM approach can enhance the conventional fuzzy c-means algorithm by producing homogeneous segmentation and reducing the edge blurring artifact simultaneously. The major contribution of ADFLICM is use of the new fuzzy local similarity measure based on pixel spatial attraction model, which adaptively determines the weighting factors for neighboring pixel effects without any experimentally set parameters. The weighting factor for each neighborhood is fully adaptive to the image content, and the balance between insensitiveness to noise and reduction of edge blurring artifact to preserve image details is automatically achieved by using the new fuzzy local similarity measure. Four different types of images were used in the experiments to examine the performance of ADFLICM. The experimental results indicate that ADFLICM produces greater accuracy than the other four methods and hence provides an effective clustering algorithm for classification of remotely sensed imagery.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2017.2702061