Matrix period in max-algebra

Periodicity of matrices in max-algebra is studied. A necessary and sufficient condition is found for a given matrix to be almost periodic. The period of a matrix is shown to be the least common multiple of the high periods of all non-trivial highly connected components in the corresponding digraph o...

Full description

Saved in:
Bibliographic Details
Published in:Discrete Applied Mathematics Vol. 103; no. 1; pp. 167 - 175
Main Authors: MOLNAROVA, M, PRIBIS, J
Format: Journal Article
Language:English
Published: Lausanne Elsevier B.V 15.07.2000
Amsterdam Elsevier
New York, NY
Subjects:
ISSN:0166-218X, 1872-6771
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Periodicity of matrices in max-algebra is studied. A necessary and sufficient condition is found for a given matrix to be almost periodic. The period of a matrix is shown to be the least common multiple of the high periods of all non-trivial highly connected components in the corresponding digraph of A. An O(n 3) algorithm for computing the exact value of the matrix period for a given matrix is described.
AbstractList Periodicity of matrices in max-algebra is studied. A necessary and sufficient condition is found for a given matrix to be almost periodic. The period of a matrix is shown to be the least common multiple of the high periods of all non-trivial highly connected components in the corresponding digraph of A. An O(n 3) algorithm for computing the exact value of the matrix period for a given matrix is described.
Author Pribiš, Ján
Molnárová, Monika
Author_xml – sequence: 1
  givenname: M
  surname: MOLNAROVA
  fullname: MOLNAROVA, M
  organization: Department of Mathematics, Faculty of Electrical Engineering and Informatics, Technical University, Hlavnd 6, 04213 Košice, Slovakia
– sequence: 2
  givenname: J
  surname: PRIBIS
  fullname: PRIBIS, J
  organization: Department of Mathematics, Faculty of Electrical Engineering and Informatics, Technical University, Hlavnd 6, 04213 Košice, Slovakia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1386988$$DView record in Pascal Francis
BookMark eNqFkE1LAzEQhoNUcFv9Bwo9eNBDNMlusgkepBS_oOLBHryFfMxKZLtbkkXqv3fblR689DLDwPO-MM8YjZq2AYQuKLmhhIrb934IzKj8uFLqmhBWMMyPUEZlybAoSzpC2R45QeOUvgghtL8ydP5quhg20zXE0PppaKYrs8Gm_gQbzSk6rkyd4OxvT9Dy8WE5f8aLt6eX-WyBXZ6LDue-EIx6V1mgTnqmSlZZRwpSSQeCFR6kNMQqIZQspODcFooz66VQ3FuST9DlULs2yZm6iqZxIel1DCsTfzTNe1DKHrsbMBfblCJU2oXOdKFtumhCrSnRWx16p0Nvf9VK6Z0Ozfs0_5fe9x_I3Q856AV8B4g6uQCNAx8iuE77Nhxo-AXdK3gd
CODEN DAMADU
CitedBy_id crossref_primary_10_1016_j_laa_2005_02_033
crossref_primary_10_1016_j_laa_2015_02_025
crossref_primary_10_1016_j_laa_2009_04_027
crossref_primary_10_1016_j_fss_2011_01_009
crossref_primary_10_2478_v10198_011_0029_4
crossref_primary_10_1016_j_laa_2011_02_038
crossref_primary_10_1016_j_laa_2013_05_029
crossref_primary_10_1080_0233193031000090727
Cites_doi 10.1016/0012-365X(73)90166-0
10.1007/978-3-642-48708-8
10.1016/0022-247X(77)90274-8
10.1016/S0166-218X(99)00174-2
10.1145/321105.321107
10.1016/S0166-218X(96)00079-0
ContentType Journal Article
Copyright 2000 Elsevier Science B.V.
2000 INIST-CNRS
Copyright_xml – notice: 2000 Elsevier Science B.V.
– notice: 2000 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/S0166-218X(99)00242-5
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6771
EndPage 175
ExternalDocumentID 1386988
10_1016_S0166_218X_99_00242_5
S0166218X99002425
GroupedDBID -~X
6I.
AAFTH
ADEZE
AFTJW
AI.
ALMA_UNASSIGNED_HOLDINGS
FA8
FDB
OAUVE
VH1
WUQ
AAYXX
CITATION
IQODW
ID FETCH-LOGICAL-c336t-3d4621dcfbe1c8d2972fbc040f8ce624de88a0b9669848655b4952bd8695db03
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000087473600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0166-218X
IngestDate Wed Apr 02 07:37:42 EDT 2025
Tue Nov 18 21:47:44 EST 2025
Sat Nov 29 03:57:24 EST 2025
Sat Apr 29 22:49:15 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords secondary 05C50
primary 04A72
15A33
Max-algebra
Matrix period
Necessary and sufficient condition
Max algebra
Connected component
NP complete problem
Connectedness
Dynamical system
Directed graph
Complexity
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c336t-3d4621dcfbe1c8d2972fbc040f8ce624de88a0b9669848655b4952bd8695db03
OpenAccessLink https://dx.doi.org/10.1016/S0166-218X(99)00242-5
PageCount 9
ParticipantIDs pascalfrancis_primary_1386988
crossref_citationtrail_10_1016_S0166_218X_99_00242_5
crossref_primary_10_1016_S0166_218X_99_00242_5
elsevier_sciencedirect_doi_10_1016_S0166_218X_99_00242_5
PublicationCentury 2000
PublicationDate 2000-07-15
PublicationDateYYYYMMDD 2000-07-15
PublicationDate_xml – month: 07
  year: 2000
  text: 2000-07-15
  day: 15
PublicationDecade 2000
PublicationPlace Lausanne
Amsterdam
New York, NY
PublicationPlace_xml – name: Amsterdam
– name: Lausanne
– name: New York, NY
PublicationTitle Discrete Applied Mathematics
PublicationYear 2000
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Gavalec (BIB6) 1997; 75
Gavalec (BIB5) 1995; 6
M. Gavalec, Linear matrix period in max-plus algebra, preprint.
E. Draženská, M. Molnárová, Periods of Monge matrices with zero-weight cycles, Proceedings of the Conference on Informatics and Algorithms, Prešov, 1998, pp. 327–330.
M. Gavalec, Algorithms of periodicity problems in fuzzy algebra, Proceedings of the Conference on Informatics and Algorithms, Prešov, 1998, pp. 152–156.
Thomason (BIB17) 1977; 57
R.A. Cuninghame-Green, Minimax Algebra, Lecture Notes in Economics and Mathematical Systems, Vol. 166, Springer, Berlin, 1979.
Gavalec (BIB9) 1999; 16
E. Draženská, M. Molnárová, Orbit periods in max-algebra, preprint.
Warshall (BIB18) 1962; 9
Balcer, Veinott (BIB1) 1973; 38
Zimmermann (BIB19) 1981; Vol. 10
Gavalec, Rote (BIB10) 1999; 16
M. Gavalec, Linear periods of Monge matrices in max-plus algebra, preprint.
M. Gavalec, J. Plávka, Computing linear period of circulant and Toeplitz matrices in max-plus algebra, preprint.
M. Gavalec, Computational complexity of the reachability problem in fuzzy algebra, Proceedings of the Seventh IFSA World Congress, Praha, 1997, Vol. II, pp. 216–220.
Molnárová (BIB16) 1999; 16
Gavalec (BIB11) 1999; 100
Gavalec (BIB7) 1997; 12
Gavalec (10.1016/S0166-218X(99)00242-5_BIB11) 1999; 100
10.1016/S0166-218X(99)00242-5_BIB8
Molnárová (10.1016/S0166-218X(99)00242-5_BIB16) 1999; 16
10.1016/S0166-218X(99)00242-5_BIB3
10.1016/S0166-218X(99)00242-5_BIB4
Gavalec (10.1016/S0166-218X(99)00242-5_BIB7) 1997; 12
Zimmermann (10.1016/S0166-218X(99)00242-5_BIB19) 1981; Vol. 10
10.1016/S0166-218X(99)00242-5_BIB15
10.1016/S0166-218X(99)00242-5_BIB14
10.1016/S0166-218X(99)00242-5_BIB13
10.1016/S0166-218X(99)00242-5_BIB2
10.1016/S0166-218X(99)00242-5_BIB12
Thomason (10.1016/S0166-218X(99)00242-5_BIB17) 1977; 57
Gavalec (10.1016/S0166-218X(99)00242-5_BIB5) 1995; 6
Balcer (10.1016/S0166-218X(99)00242-5_BIB1) 1973; 38
Gavalec (10.1016/S0166-218X(99)00242-5_BIB10) 1999; 16
Gavalec (10.1016/S0166-218X(99)00242-5_BIB9) 1999; 16
Gavalec (10.1016/S0166-218X(99)00242-5_BIB6) 1997; 75
Warshall (10.1016/S0166-218X(99)00242-5_BIB18) 1962; 9
References_xml – volume: 75
  start-page: 63
  year: 1997
  end-page: 70
  ident: BIB6
  article-title: Computing matrix period in max–min algebra
  publication-title: Discrete Appl. Math.
– volume: 16
  start-page: 47
  year: 1999
  end-page: 60
  ident: BIB9
  article-title: Periods of special fuzzy matrices
  publication-title: Tatra Mountains Math. Publ.
– volume: 57
  start-page: 476
  year: 1977
  end-page: 480
  ident: BIB17
  article-title: Convergence of powers of a fuzzy matrix
  publication-title: J. Math. Anal. Appl.
– reference: M. Gavalec, Linear matrix period in max-plus algebra, preprint.
– reference: M. Gavalec, Computational complexity of the reachability problem in fuzzy algebra, Proceedings of the Seventh IFSA World Congress, Praha, 1997, Vol. II, pp. 216–220.
– reference: R.A. Cuninghame-Green, Minimax Algebra, Lecture Notes in Economics and Mathematical Systems, Vol. 166, Springer, Berlin, 1979.
– volume: 9
  start-page: 11
  year: 1962
  end-page: 12
  ident: BIB18
  article-title: A theorem of Boolean matrices
  publication-title: J. ACM
– volume: 6
  start-page: 35
  year: 1995
  end-page: 46
  ident: BIB5
  article-title: Periodicity of matrices and orbits in fuzzy algebra
  publication-title: Tatra Mountains Math. Publ.
– reference: E. Draženská, M. Molnárová, Periods of Monge matrices with zero-weight cycles, Proceedings of the Conference on Informatics and Algorithms, Prešov, 1998, pp. 327–330.
– volume: 100
  start-page: 49
  year: 1999
  end-page: 65
  ident: BIB11
  article-title: Computing orbit period in max–min algebra
  publication-title: Discrete Appl. Math.
– reference: M. Gavalec, Algorithms of periodicity problems in fuzzy algebra, Proceedings of the Conference on Informatics and Algorithms, Prešov, 1998, pp. 152–156.
– reference: E. Draženská, M. Molnárová, Orbit periods in max-algebra, preprint.
– volume: 16
  start-page: 135
  year: 1999
  end-page: 149
  ident: BIB16
  article-title: Periods of matrices with zero-weight cycles in max-algebra
  publication-title: Tatra Mountains Math. Publ.
– volume: Vol. 10
  year: 1981
  ident: BIB19
  publication-title: Linear and combinatorial optimization in ordered algebraic structures
– volume: 38
  start-page: 295
  year: 1973
  end-page: 303
  ident: BIB1
  article-title: Computing a graph's period quadratically by node condensation
  publication-title: Discrete Math.
– volume: 16
  start-page: 61
  year: 1999
  end-page: 79
  ident: BIB10
  article-title: Reachability of fuzzy matrix period
  publication-title: Tatra Mountains Math. Publ.
– reference: M. Gavalec, J. Plávka, Computing linear period of circulant and Toeplitz matrices in max-plus algebra, preprint.
– volume: 12
  start-page: 81
  year: 1997
  end-page: 88
  ident: BIB7
  article-title: Reaching matrix period is NP-complete
  publication-title: Tatra mountains Math. Publ.
– reference: M. Gavalec, Linear periods of Monge matrices in max-plus algebra, preprint.
– volume: 38
  start-page: 295
  year: 1973
  ident: 10.1016/S0166-218X(99)00242-5_BIB1
  article-title: Computing a graph's period quadratically by node condensation
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(73)90166-0
– ident: 10.1016/S0166-218X(99)00242-5_BIB3
– ident: 10.1016/S0166-218X(99)00242-5_BIB15
– volume: Vol. 10
  year: 1981
  ident: 10.1016/S0166-218X(99)00242-5_BIB19
– ident: 10.1016/S0166-218X(99)00242-5_BIB4
– ident: 10.1016/S0166-218X(99)00242-5_BIB2
  doi: 10.1007/978-3-642-48708-8
– ident: 10.1016/S0166-218X(99)00242-5_BIB8
– volume: 16
  start-page: 61
  year: 1999
  ident: 10.1016/S0166-218X(99)00242-5_BIB10
  article-title: Reachability of fuzzy matrix period
  publication-title: Tatra Mountains Math. Publ.
– volume: 57
  start-page: 476
  year: 1977
  ident: 10.1016/S0166-218X(99)00242-5_BIB17
  article-title: Convergence of powers of a fuzzy matrix
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(77)90274-8
– volume: 100
  start-page: 49
  year: 1999
  ident: 10.1016/S0166-218X(99)00242-5_BIB11
  article-title: Computing orbit period in max–min algebra
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(99)00174-2
– volume: 9
  start-page: 11
  year: 1962
  ident: 10.1016/S0166-218X(99)00242-5_BIB18
  article-title: A theorem of Boolean matrices
  publication-title: J. ACM
  doi: 10.1145/321105.321107
– volume: 12
  start-page: 81
  year: 1997
  ident: 10.1016/S0166-218X(99)00242-5_BIB7
  article-title: Reaching matrix period is NP-complete
  publication-title: Tatra mountains Math. Publ.
– volume: 16
  start-page: 135
  year: 1999
  ident: 10.1016/S0166-218X(99)00242-5_BIB16
  article-title: Periods of matrices with zero-weight cycles in max-algebra
  publication-title: Tatra Mountains Math. Publ.
– volume: 75
  start-page: 63
  year: 1997
  ident: 10.1016/S0166-218X(99)00242-5_BIB6
  article-title: Computing matrix period in max–min algebra
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(96)00079-0
– volume: 16
  start-page: 47
  year: 1999
  ident: 10.1016/S0166-218X(99)00242-5_BIB9
  article-title: Periods of special fuzzy matrices
  publication-title: Tatra Mountains Math. Publ.
– ident: 10.1016/S0166-218X(99)00242-5_BIB12
– ident: 10.1016/S0166-218X(99)00242-5_BIB13
– volume: 6
  start-page: 35
  year: 1995
  ident: 10.1016/S0166-218X(99)00242-5_BIB5
  article-title: Periodicity of matrices and orbits in fuzzy algebra
  publication-title: Tatra Mountains Math. Publ.
– ident: 10.1016/S0166-218X(99)00242-5_BIB14
SSID ssj0001218
ssj0000186
ssj0006644
Score 1.6382477
Snippet Periodicity of matrices in max-algebra is studied. A necessary and sufficient condition is found for a given matrix to be almost periodic. The period of a...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 167
SubjectTerms Algebra
Combinatorics
Combinatorics. Ordered structures
Exact sciences and technology
Graph theory
Linear and multilinear algebra, matrix theory
Mathematical logic, foundations, set theory
Mathematics
Matrix period
Max-algebra
Sciences and techniques of general use
Set theory
Title Matrix period in max-algebra
URI https://dx.doi.org/10.1016/S0166-218X(99)00242-5
Volume 103
WOSCitedRecordID wos000087473600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6771
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001218
  issn: 0166-218X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgy6EVQrwqCi3KgZVAyDQPx7GPVVsEFVtVYoX2FtmOLUUt2VV2W-3PZxw7jwXR0gOXKEriiZOZzHwex_Mh9E4Yk4k4lBjsgWMiGcFSAZCLDC0goqlUN5yRP75l5-dsNuMXnoxz2dAJZFXF1mu--K-qhmOgbLt09h7q7oTCAdgHpcMW1A7bf1L8xBbdX9t6xOXcFlb6-FOssWXzkLUYQtGTEjwGQOYOiE66Cq4dzp7Mr6pmKj2q5zdup8mggiO47Pz5RV3Kcnyc-pNn7rpqI58Q2kSlW1HZphgpxRD4Zxs-MkyGxoCTgc-LHJ-GD5-RI0L5wzO7JMH3TvrYjvTGMW9AAk77cNROwf8Wpbp_Bwe_pVGaW1E553kjJk8foq04Szkboa2jr6ezs0ElMVsmb7vNvfVTTQC5iC8A7zrWL_M67Hv7nvMPvqd_AzCPF2IJn5VxfCgDkDJ9ip740UVw5KziGXqgq-doZ6DYF2jf2Ufg7CMoq2BgHy_R9PPp9PgL9hQZWCUJXeGkIDSOCmWkjhQrYp7FRipwzIYpTWNSaMZEKGFMyxmxa5AlDIhjWTDK00KGyS4aVfNKv0IBk0TQOARRUUIKkQlhwiQzodaaFpzxPUTax86VLx9vWUyu8lsVsoc-dc0Wrn7KXQ1Y-05zDwIduMvBku5qerChg_6GCTwvY6_v25c3aLv_QvbRaFVf6wP0SN2symX91pvYL_UOeAo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Matrix+period+in+max-algebra&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Moln%C3%A1rov%C3%A1%2C+Monika&rft.au=Pribi%C5%A1%2C+J%C3%A1n&rft.date=2000-07-15&rft.issn=0166-218X&rft.volume=103&rft.issue=1-3&rft.spage=167&rft.epage=175&rft_id=info:doi/10.1016%2FS0166-218X%2899%2900242-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0166_218X_99_00242_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon