Matrix period in max-algebra

Periodicity of matrices in max-algebra is studied. A necessary and sufficient condition is found for a given matrix to be almost periodic. The period of a matrix is shown to be the least common multiple of the high periods of all non-trivial highly connected components in the corresponding digraph o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete Applied Mathematics Ročník 103; číslo 1; s. 167 - 175
Hlavní autoři: MOLNAROVA, M, PRIBIS, J
Médium: Journal Article
Jazyk:angličtina
Vydáno: Lausanne Elsevier B.V 15.07.2000
Amsterdam Elsevier
New York, NY
Témata:
ISSN:0166-218X, 1872-6771
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Periodicity of matrices in max-algebra is studied. A necessary and sufficient condition is found for a given matrix to be almost periodic. The period of a matrix is shown to be the least common multiple of the high periods of all non-trivial highly connected components in the corresponding digraph of A. An O(n 3) algorithm for computing the exact value of the matrix period for a given matrix is described.
ISSN:0166-218X
1872-6771
DOI:10.1016/S0166-218X(99)00242-5