Matrix period in max-algebra
Periodicity of matrices in max-algebra is studied. A necessary and sufficient condition is found for a given matrix to be almost periodic. The period of a matrix is shown to be the least common multiple of the high periods of all non-trivial highly connected components in the corresponding digraph o...
Uloženo v:
| Vydáno v: | Discrete Applied Mathematics Ročník 103; číslo 1; s. 167 - 175 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Lausanne
Elsevier B.V
15.07.2000
Amsterdam Elsevier New York, NY |
| Témata: | |
| ISSN: | 0166-218X, 1872-6771 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Periodicity of matrices in
max-algebra is studied. A necessary and sufficient condition is found for a given matrix to be almost periodic. The period of a matrix is shown to be the least common multiple of the high periods of all non-trivial highly connected components in the corresponding digraph of
A. An
O(n
3)
algorithm for computing the exact value of the matrix period for a given matrix is described. |
|---|---|
| ISSN: | 0166-218X 1872-6771 |
| DOI: | 10.1016/S0166-218X(99)00242-5 |