Approximation in AC(σ)
For a nonempty compact subset σ in the plane, the space A C ( σ ) is the closure of the space of complex polynomials in two real variables under a particular variation norm. In the classical setting, AC [0, 1] contains several other useful dense subsets, such as continuous piecewise linear functions...
Uložené v:
| Vydané v: | Banach journal of mathematical analysis Ročník 17; číslo 1 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
01.01.2023
|
| Predmet: | |
| ISSN: | 2662-2033, 1735-8787 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | For a nonempty compact subset
σ
in the plane, the space
A
C
(
σ
)
is the closure of the space of complex polynomials in two real variables under a particular variation norm. In the classical setting,
AC
[0, 1] contains several other useful dense subsets, such as continuous piecewise linear functions,
C
1
functions and Lipschitz functions. In this paper, we examine analogues of these results in this more general setting. |
|---|---|
| ISSN: | 2662-2033 1735-8787 |
| DOI: | 10.1007/s43037-022-00229-y |