Approximation in AC(σ)

For a nonempty compact subset σ in the plane, the space A C ( σ ) is the closure of the space of complex polynomials in two real variables under a particular variation norm. In the classical setting, AC [0, 1] contains several other useful dense subsets, such as continuous piecewise linear functions...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Banach journal of mathematical analysis Ročník 17; číslo 1
Hlavní autoři: Doust, Ian, Leinert, Michael, Stoneham, Alan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.01.2023
Témata:
ISSN:2662-2033, 1735-8787
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:For a nonempty compact subset σ in the plane, the space A C ( σ ) is the closure of the space of complex polynomials in two real variables under a particular variation norm. In the classical setting, AC [0, 1] contains several other useful dense subsets, such as continuous piecewise linear functions, C 1 functions and Lipschitz functions. In this paper, we examine analogues of these results in this more general setting.
ISSN:2662-2033
1735-8787
DOI:10.1007/s43037-022-00229-y