Gradient-based iterative parameter estimation for Box–Jenkins systems
This paper presents a gradient-based iterative identification algorithms for Box–Jenkins systems with finite measurement input/output data. Compared with the pseudo-linear regression stochastic gradient approach, the proposed algorithm updates the parameter estimation using all the available data at...
Saved in:
| Published in: | Computers & mathematics with applications (1987) Vol. 60; no. 5; pp. 1200 - 1208 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.09.2010
|
| Subjects: | |
| ISSN: | 0898-1221, 1873-7668 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper presents a gradient-based iterative identification algorithms for Box–Jenkins systems with finite measurement input/output data. Compared with the pseudo-linear regression stochastic gradient approach, the proposed algorithm updates the parameter estimation using all the available data at each iterative computation (at each iteration), and thus can produce highly accurate parameter estimation. An example is given. |
|---|---|
| Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0898-1221 1873-7668 |
| DOI: | 10.1016/j.camwa.2010.06.001 |