Gradient-based iterative parameter estimation for Box–Jenkins systems

This paper presents a gradient-based iterative identification algorithms for Box–Jenkins systems with finite measurement input/output data. Compared with the pseudo-linear regression stochastic gradient approach, the proposed algorithm updates the parameter estimation using all the available data at...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & mathematics with applications (1987) Ročník 60; číslo 5; s. 1200 - 1208
Hlavní autoři: Wang, Dongqing, Yang, Guowei, Ding, Ruifeng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.09.2010
Témata:
ISSN:0898-1221, 1873-7668
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a gradient-based iterative identification algorithms for Box–Jenkins systems with finite measurement input/output data. Compared with the pseudo-linear regression stochastic gradient approach, the proposed algorithm updates the parameter estimation using all the available data at each iterative computation (at each iteration), and thus can produce highly accurate parameter estimation. An example is given.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2010.06.001