Riemann surface of the Riemann zeta function
In this paper we treat the classical Riemann zeta function as a function of three variables: one is the usual complex 1-dimensional, customly denoted as s, another two are complex infinite dimensional, we denote them as b={bn}n=1∞ and z={zn}n=1∞. When b={1}n=1∞ and z={1n}n=1∞ one gets the usual Riem...
Gespeichert in:
| Veröffentlicht in: | Journal of mathematical analysis and applications Jg. 529; H. 2; S. 126756 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
15.01.2024
Elsevier |
| Schlagworte: | |
| ISSN: | 0022-247X, 1096-0813 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper we treat the classical Riemann zeta function as a function of three variables: one is the usual complex 1-dimensional, customly denoted as s, another two are complex infinite dimensional, we denote them as b={bn}n=1∞ and z={zn}n=1∞. When b={1}n=1∞ and z={1n}n=1∞ one gets the usual Riemann zeta function. Our goal in this paper is to study the meromorphic continuation of ζ(b,z,s) as a function of the triple (b,z,s). |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2022.126756 |