Riemann surface of the Riemann zeta function

In this paper we treat the classical Riemann zeta function as a function of three variables: one is the usual complex 1-dimensional, customly denoted as s, another two are complex infinite dimensional, we denote them as b={bn}n=1∞ and z={zn}n=1∞. When b={1}n=1∞ and z={1n}n=1∞ one gets the usual Riem...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of mathematical analysis and applications Ročník 529; číslo 2; s. 126756
Hlavný autor: Ivashkovich, S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 15.01.2024
Elsevier
Predmet:
ISSN:0022-247X, 1096-0813
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper we treat the classical Riemann zeta function as a function of three variables: one is the usual complex 1-dimensional, customly denoted as s, another two are complex infinite dimensional, we denote them as b={bn}n=1∞ and z={zn}n=1∞. When b={1}n=1∞ and z={1n}n=1∞ one gets the usual Riemann zeta function. Our goal in this paper is to study the meromorphic continuation of ζ(b,z,s) as a function of the triple (b,z,s).
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2022.126756