Randomized algorithms for the computation of multilinear rank-(μ1,μ2,μ3) approximations
We present some randomized algorithms for computing multilinear rank- ( μ 1 , μ 2 , μ 3 ) approximations of tensors by combining the sparse subspace embedding and the singular value decomposition. The error bound for this algorithm with the high probability is obtained by the properties of sparse su...
Uloženo v:
| Vydáno v: | Journal of global optimization Ročník 87; číslo 2-4; s. 373 - 403 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.11.2023
Springer |
| Témata: | |
| ISSN: | 0925-5001, 1573-2916 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present some randomized algorithms for computing multilinear rank-
(
μ
1
,
μ
2
,
μ
3
)
approximations of tensors by combining the sparse subspace embedding and the singular value decomposition. The error bound for this algorithm with the high probability is obtained by the properties of sparse subspace embedding. Furthermore, combining the power scheme and the proposed randomized algorithm, we derive a three-stage randomized algorithm and make a probabilistic analysis for its error bound. The efficiency of the proposed algorithms is illustrated via numerical examples. |
|---|---|
| ISSN: | 0925-5001 1573-2916 |
| DOI: | 10.1007/s10898-022-01182-8 |