Randomized algorithms for the computation of multilinear rank-(μ1,μ2,μ3) approximations

We present some randomized algorithms for computing multilinear rank- ( μ 1 , μ 2 , μ 3 ) approximations of tensors by combining the sparse subspace embedding and the singular value decomposition. The error bound for this algorithm with the high probability is obtained by the properties of sparse su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization Jg. 87; H. 2-4; S. 373 - 403
Hauptverfasser: Che, Maolin, Wei, Yimin, Xu, Yanwei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.11.2023
Springer
Schlagworte:
ISSN:0925-5001, 1573-2916
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present some randomized algorithms for computing multilinear rank- ( μ 1 , μ 2 , μ 3 ) approximations of tensors by combining the sparse subspace embedding and the singular value decomposition. The error bound for this algorithm with the high probability is obtained by the properties of sparse subspace embedding. Furthermore, combining the power scheme and the proposed randomized algorithm, we derive a three-stage randomized algorithm and make a probabilistic analysis for its error bound. The efficiency of the proposed algorithms is illustrated via numerical examples.
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-022-01182-8