Some accelerated alternating proximal gradient algorithms for a class of nonconvex nonsmooth problems

In this paper, we study a class of nonconvex and nonsmooth optimization problems, whose objective function can be split into two separable terms and one coupling term. Alternating proximal gradient methods combining with extrapolation are proposed to solve such problems. Under some assumptions, we p...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of global optimization Ročník 87; číslo 2-4; s. 939 - 964
Hlavní autori: Yang, Xin, Xu, Lingling
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.11.2023
Springer
Predmet:
ISSN:0925-5001, 1573-2916
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we study a class of nonconvex and nonsmooth optimization problems, whose objective function can be split into two separable terms and one coupling term. Alternating proximal gradient methods combining with extrapolation are proposed to solve such problems. Under some assumptions, we prove that every cluster point of the sequence generated by our algorithms is a critical point. Furthermore, if the objective function satisfies Kurdyka–Łojasiewicz property, the generated sequence is globally convergent to a critical point. In order to make the algorithm more effective and flexible, we also use some strategies to update the extrapolation parameter and solve the problems with unknown Lipschitz constant. Numerical experiments demonstrate the effectiveness of our algorithms.
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-022-01214-3